
716 J. C. CANTRELL [September 

study any divisible semigroup, we need consider all congruences of 
]R= | J a jRa. For this purpose the following general result is used: A 
congruence of a commutative cancellative semigroup S is determined 
by a system of ideals of 5 and a system of subgroups of the quotient 
group of 5. 
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1. Introduction. In this paper we use the terminology introduced 
by Brown in [2]. We consider an (w--i)-sphere S embedded in 5n 

and try to determine if the components of 5n — S have closures that 
are n-cells (i.e. if 5 is flat). Brown has shown that if S is locally flat 
at each of its points, then 5 is bi-collared [2]. Hence, in this case, 5 
is flat. The principal result of this paper is that if S is not flat in 5n, 
n>3, and E is the set of points at which S fails to be locally flat, then 
E contains more than one point. This is a fundamental point at 
which the embedding problems for n>3 differ from those for w*=3. 
Throughout this paper we will assume that n>3. 

2. Outline of proof of principal result. By combining Theorem 1 of 
[2] and Theorem 2 of [l] one can establish the following. 

LEMMA 1. Let S be an (n — 1)-sphere in Sn and G a component of 
Sn — 5. If S is locally collared in CI G, then S is collared in Cl G and 
Cl G is an n*celL 



1963] ALMOST LOCALLY FLAT EMBEDDINGS OF Sn~l IN S 717 

For O ^ g l we let At be the solid ball in En which is centered at 
the origin and has radius t. Let B be the solid ball in En which is 
centered at —1 on the and has radius 2. With the aid of 
Theorem 1 of [2] we are able to establish the following lemma. 

LEMMA 2. Let S be an (n — l)-sphere in Sn, p€zS, and G and H the 
components of Sn — S. If S is locally flat at each point of S—p and S 
has a local collar inC\Hatp, then there is a homeomorphism f carrying 
Cl(B - i l i / 0 into S* such that (1) h(Bd Ai) = 5, (2) A[(0f 0, • - , 0, 1)] 
= p, and (3) ft(Bd A1/2) CH. 

We keep the notation of Lemma 2 and let L be the closed arc in 
the Xrt-axis from (0, 0, • • • , 0, 1/2) to (0, 0, * • • , 0, 1), and set 
L'*=f(L). There is a continuous mapping h of Cl(i3 —yii/a) onto itself 
such that h is the identity on Bd B, A(Bd ^1/2) = Bd Ax, and h carries 
Cl(5-4i / 2)-LhomeomorphicallyontoCl(B-il i)-(0,0, • • -,0,1). 
Thus, if K is the component of Sn— /(Bd Ai/2) which contains G, then 
there is a continuous mapping g of CI if onto Cl G which carries 
(CI K) — L' homeomorphically onto (Cl G) —p. We keep in mind that 
Cl K is an w-cell and observe that the following statement is true. 
If there is a continuous mapping k of Cl K onto Cl K such that 
£(£')=ƒ[(0, 0, • • • , 0, 1/2)] and h carries ( C l i O - I ' homeomor
phically onto (CI K)-f[(0, 0, • • • , 0, 1/2)], then Cl G is an w-cell 
(jfelf1 is a homeomorphism of Cl G onto Cl K). 

Thus in order to conclude that Cl G is an w-cell (and, hence that 
5 is flat) it suffices to construct the mapping k above. If Cl K and 
V are polyhedral there is no difficulty. So we assign to CI if a com
binatorial triangulation and proceed to move V onto a polyhedral 
arc in Cl K. By results of Homma and Gluck [4] we may construct 
a homeomorphism r\ of Cl K onto itself so that n{Lf) is locally poly
hedral at each point of ri(L'— p) =ri(L')— n{p). Then Lemma 2 of 
[3] is used to obtain a homeomorphism r2 of Cl K onto itself so that 
rtf\{L!) is polyhedral. Then the desired mapping k can be constructed. 
These results give the following theorem. 

THEOREM 1 .7 /5 is as in Lemma 2, then S is flat. 

With an adaptation of MazurJs technique [5] we are able to re
move the requirement of local collars in Cl H at each point of S and 
establish the following theorem. 

THEOREM 2. Let S be an (n — l)-sphere in 5n, pÇiS, and G a com
ponent of Sn — S. If S—p is locally collared in CI G, then Cl G is an n-
cell. 
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COROLLARY. If S is an (n — 1)-sphere in Sn, p€zSt and S is locally 
flat at each point of S~p, then S is flat. 

3. Conjectures. If S is nonflat in 5n, w>3, and E is the set of 
points of S at which S fails to be locally flat, we have seen that E 
must contain more than one point. The natural question is: how many 
points must E contain? It is conjectured that there are no isolated 
points of £, and therefore E contains a Cantor set. 

We say that the fe-cell D in En is flat if there is a homeomorphism h 
of En onto itself such that h(D) is a standard unit cell in the hyper-
plane #» = #»_i = • • • =x&+i = 0. The author has reduced the above 
conjecture to the following. 

CONJECTURE. If D = Di\JD2, where Di and D2 are flat (w —l)-cells 
in En, n>3, and ZV\D2 = Bd D^Bd D2 is a flat (w-2)-cell, then 
D is flat. 
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