INFINITE MEASURE PRESERVING TRANSFORMATIONS WITH "MIXING"

BY S. KAKUTANI AND W. PARRY ${ }^{1}$
Communicated by W. S. Massey, June 24, 1963

1. Introduction. It is well known that a transformation T which preserves a finite measure has the mixing property

$$
\begin{gather*}
T^{(k)}=T \times T \times \cdots \times T(k \text { times, } k \geqq 2) \text { is ergodic } \tag{1.1}\\
\text { if and only if } T \text { is weakly mixing [1]. }
\end{gather*}
$$

The purpose of this note is to give, for each positive integer k, an example of a transformation T which preserves a σ-finite infinite measure with the property,

$$
\begin{equation*}
T^{(k)} \text { is ergodic but } T^{(k+1)} \text { is not ergodic. } \tag{1.2}
\end{equation*}
$$

We also give an example of a transformation T which preserves a σ-finite infinite measure with the property

$$
\begin{equation*}
T^{(k)} \text { is ergodic for each } k=1,2, \cdots \tag{1.3}
\end{equation*}
$$

A transformation T with property (1.2) is said to have ergodic index k and a transformation T with property (1.3) is said to have infinite ergodic index. For completeness, we say that a nonergodic transformation has zero ergodic index.

Thus, for each $k=0,1,2, \cdots, \infty$, infinite measure preserving transformations exist with ergodic index k, unlike finite measure preserving transformations which assume ergodic indices $0,1, \infty$ only.

The examples are taken from Gillis [2], and are Markov transformations derived from "centrally biased random-walks."
2. Markov transformations preserving a σ-finite infinite measure. Let

$$
P=\|p(i, j)\|, \quad i, j=0, \pm 1, \pm 2, \cdots
$$

be a stochastic matrix with only one ergodic class, i.e.,

$$
p(i, j) \geqq 0, \quad \sum_{j=-\infty}^{\infty} p(i, j)=1
$$

and for each (i, j) there exists $n>0$ for which $p^{n}(i, j)>0$ where $P^{n}=\left\|p^{n}(i, j)\right\|$. Assume also that there exists a left eigenvector

[^0]$\Lambda=\{\lambda(i)\}$ (with eigenvalue one) with positive entries such that
$$
\sum_{i=-\infty}^{\infty} \lambda(i)=\infty
$$

Let Z be the set of all integers and let

$$
X=\prod_{i=-\infty}^{\infty} Z_{i}, \quad Z_{i}=Z, \quad i=0, \pm 1, \cdots
$$

A generic element of X is a point

$$
x=\left\{z_{i}(x)\right\} .
$$

A cylinder of X is a set of the form

$$
C_{m, n}(x)=\left\{y \in X: z_{i}(x)=z_{i}(y), m \leqq i \leqq n\right\} .
$$

Let \mathbb{B} be the Borel field generated by the cylinders of X and let p be the σ-finite measure generated by the cylinder function

$$
p C_{m, n}(x)=\lambda\left(z_{m}(x)\right) \prod_{i=m}^{n-1} p\left(z_{i}(x), z_{i+1}(x)\right)
$$

It is clear that the measure p is invariant under the shift transformation T,

$$
T\left\{z_{i}\right\}=\left\{z_{i}^{\prime}\right\}, \quad z_{i}^{\prime}=z_{i+1}
$$

and $X=\cup_{i=-\infty}^{\infty} X_{i}, \quad p\left(X_{i}\right)=\lambda(i), \quad p(X)=\infty$, where $X_{i}=\{x \in X$: $\left.z_{0}(x)=i\right\}$.

We refer to (X, \leftrightarrow, p, T) as the σ-finite stationary Markov chain defined by $P . T$ is the Markov transformation defined by P.

We shall be interested in the following conditions on P :
I_{k}. For every $i_{1}, \cdots, i_{k} ; j_{1} \cdots j_{k}$ there exists $n>0$ such that

$$
p^{n}\left(i_{1}, j_{1}\right) \times \cdots \times p^{n}\left(i_{k}, j_{k}\right)>0
$$

$\mathrm{II}_{k} . \sum_{n=1}^{\infty}\left[p^{n}(0,0)\right]^{k}=\infty$.
Theorem. P satisfies I_{k} and II_{k} if and only if the Markov transformation T defined by P satisfies: $T^{(k)}$ is ergodic with respect to $p^{(k)}$ $=p \times \cdots \times p(k$ times $)$.

The above theorem can be deduced from a similar theorem in [3]. We indicate below the main points of the proof.

The theorem need only be proved for the case $k=1$. In fact, if

$$
R\left(i_{1}, \cdots, i_{k}\right)=X_{i_{1}} \times \cdots \times X_{i_{k}}
$$

then condition I_{k} states that

$$
\begin{equation*}
\lambda^{-1}\left(i_{1}\right) \cdots \lambda^{-1}\left(i_{k}\right) p^{(k)}\left[R\left(i_{1} \cdots i_{k}\right) \cap\left(T^{(k)}\right)^{-n} R\left(j_{1} \cdots j_{k}\right)\right]>0 \tag{2.1}
\end{equation*}
$$

for some $n>0$. Condition II_{k} states that

$$
\begin{equation*}
\sum_{n=1}^{\infty}[\lambda(0)]^{-k} p^{(k)}\left[R(0, \cdots, 0) \cap\left(T^{(k)}\right)^{-n} R(0, \cdots, 0)\right]=\infty \tag{2.2}
\end{equation*}
$$

The k-dimensional direct product ($X^{(k)}, ß^{(k)}, p^{(k)}, T^{(k)}$) of the system (X, \mathfrak{B}, p, T) can be regarded as 1 -dimensional by relabelling the k vector states $\left(i_{1}, \cdots, i_{k}\right)$ with integers. After relabelling, in view of (2.1) and (2.2) conditions I_{k} and II_{k} become I_{1} and II_{1}.

If I_{1} is not satisfied then for some $(i, j), p^{n}(i, j)=\lambda^{-1}(i) p\left(X_{i} \cap T^{-n} X_{j}\right)$ $=0$ for all $n>0$ and T is not ergodic.

If II_{1} is not satisfied then

$$
\sum_{n=1}^{\infty} p^{n}(0,0)<\infty,
$$

the state X_{0} is not recurrent [4], and T is not ergodic since a wandering set of positive measure exists [1].

Suppose I_{1} and II_{1} are satisfied, then almost all points of X_{0} return infinitely often to X_{0} under both positive and negative iterations of T and the smallest invariant set containing X_{0} is essentially the whole space X (cf. $[4, \S 4]$).

The remainder of the proof can be completed by showing that the transformation induced by T on X_{0} [5], is a Bernoulli transformation. The ergodicity of T then follows from the ergodicity of the induced transformation [5].
3. Examples. Let $-1<\epsilon<1$, and define

$$
Q=\|q(i, j)\|, \quad i=0, \pm 1, \pm 2, \cdots
$$

where $q(i, i+1)=(1-\epsilon / i) / 2, q(i, i-1)=(1+\epsilon / i) / 2, i \neq 0, q(0,1)$ $=q(0,-1)=1 / 2$, and $q(i, j)=0$ if $j \neq i+1$ and $j \neq i-1$.

Let $M=\{m(i)\}, i=0, \pm 1, \cdots$, where

$$
m(0)=1, \quad m(i)=m(-i)=\frac{\Gamma(1+\epsilon) i \Gamma(i-\epsilon)}{\Gamma(1-\epsilon) \Gamma(i+1+\epsilon)}, \quad i>0
$$

One can easily verify that

$$
M Q=M
$$

Let $Q^{2}=\left\|q^{2}(i, j)\right\|$ and put

$$
P=\|p(i, j)\| . \quad i, j=0, \pm 2, \pm 4, \cdots
$$

where $p(i, j)=q^{2}(i, j)$. Let $\Lambda=\{\lambda(i)\}, i=0, \pm 2, \pm 4$, where $\lambda(i)=m(i)$. Then $\Lambda P=\Lambda$ and $p(i, j)=0$ if and only if $j \neq i-2, j \neq i$ and $j \neq i+2$. P satisfies condition I_{k} for every $k=1,2, \cdots$ (No difficulties arise from considering matrices P defined over the lattice of pairs of even integers.)

Moreover,

$$
\sum_{i} \lambda(i)=\infty \quad \text { if }-1<\epsilon \leqq \frac{1}{2}
$$

since

$$
\lambda(n) \sim \frac{\Gamma(1+\epsilon)}{\Gamma(1-\epsilon)} n^{-2 \epsilon}
$$

We shall need the following result of Gillis [2].
Lemma. For any $\theta>0$ there exists $K_{1}=K_{1}(\theta)$ such that for al' N,

$$
K_{1}^{-1} N^{\epsilon-1 / 2-\theta}<q^{2 N}(0,0)=p^{N}(0,0)<K_{1} N^{\epsilon-1 / 2+\theta} .
$$

Choose a positive integer k and $\eta>0$ such that

$$
\frac{1}{k}>\frac{1+\eta}{1+k}
$$

Choose ϵ such that

$$
\frac{1}{2}-\frac{1}{k}<\epsilon<\frac{1}{2}-\frac{1+\eta}{1+k}
$$

and $\theta>0$ such that

$$
\theta<\min \left(\epsilon-\frac{1}{2}+\frac{1}{k}, \frac{1}{2}-\epsilon-\frac{1+\eta}{1+k}\right) ;
$$

then

$$
-\frac{1}{k}<\epsilon-\frac{1}{2}-\theta<\epsilon-\frac{1}{2}+\theta<-\frac{1+\eta}{1+k}
$$

Consequently, by the lemma, there exists $K_{1}=K_{1}(\theta)$ such that

$$
K_{1} N^{-1 / k}<K_{1} N^{\epsilon-1 / 2-\theta}<p^{N}(0,0)<K_{1} N^{\epsilon-1 / 2+\theta}<K_{1} N^{-(1+\eta) /(1+k)}
$$

i.e.,

$$
\left(p^{N}(0,0)\right)^{k+1}<\left(K_{1}\right)^{k+1} N^{-(1+\eta)}
$$

and

$$
\left(p^{N}(0,0)\right)^{k}>\left(K_{1}\right)^{k} N^{-1}
$$

Hence, by the theorem, the Markov transformation defined by P has ergodic index k.

Finally, if $\epsilon=1 / 2$, then again by the lemma

$$
\sum_{n=1}^{\infty}\left[p^{n}(0,0)\right]^{k}=\infty \quad \text { for } k=1,2, \cdots
$$

and consequently the Markov transformation defined by P has infinite ergodic index.

References

1. P. R. Halmos, Lectures in ergodic theory, Publications of the Mathematical Society of Japan, no. 3, Mathematical Society of Japan, 1956.
2. J. Gillis, Centrally biased discrete random walk, Quart. J. Math. (2) 7 (1956), 144-152.
3. T. E. Harris and H. Robbins, Ergodic theory of Markov chains admitting an infinite invariant measure, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 860-864.
4. K. L. Chung, Markov chains with stationary transition probabilities, Springer, Berlin, 1960.
5. S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635-641.

Yale University and
University of Birmingham, England

[^0]: ${ }^{1}$ Research supported in part by NSF G-25222.

