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1. Introduction. We are given an n surface 5 (possibly with bound
ary) embedded in Rn+1 and a smooth mass density ju on the surface, 
vanishing near the boundary. We consider the following transforma
tion of C(Rn+1)-*C(R"+l) : 

(1) g(y) = f f(y - xMx)dSx. 

Letting Dm be a generic symbol for differentiation of order m, we ask 
the 

QUESTION: When does there exist an estimate of the type 

(2) llD-glU^constant-H/IlL,? 

This is related to the behavior at oo of the Fourier transform of the 
measure p. Our main result in that direction is the following: 

ESTIMATE OF FOURIER TRANSFORMS. Let 5 be a sufficiently smooth 
compact w-surface (possibly with boundary) embedded in Rn+1, JJL a 
sufficiently smooth mass distribution on S vanishing near the bound
ary of 5. Suppose that at each point of 5, k of the n principal curva
tures are different from zero. Then 

(3) I a f e(X- Y)ix(X)dSx = 0( I Y H / 2 ) . 
J XeS 

(Notation: e(')^e^'K) 
For the case of /*s=l and surfaces of strictly positive Gaussian 

curvature this result has been proved by C. S. Herz [2] and previ
ously by E. Hlawka [3]. Herz assumes S to be of differentiability 
class C[(n/2)+21. For simplicity we shall not keep track in this note of 
the smoothness assumptions on S and JU. The proof here, as it stands, 
does not give the best results in that direction. However, it can be 
modified (at the expense of making it somewhat more complicated) 
so as to get results reducing to those of [2] in the case of positive 
curvature. 

1 Preparation of this report was partially supported by the Office of Naval Re
search Contract Nonr 710 (54). 
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To answer our "question," we notice that if the Fourier transform 
(3) is 0 ( | F|-*/2) then (2) holds with p = 2 and m = ft/2. Also, (2) holds 
with m = 0 and p = oo. By a theorem of A. P. Calderón [l ] (2) holds 
with m<k/p if p^2, and m<k/pf if p^*2. We interpret fractional 
n in the sense of [ l ] . 

2. Estimates for nonhorizontal part of surface. To estimate the 
integral I in (3), first consider the case of curvature -& 0. By rotation 
of axes take F = (0, 0, • • • , 0, y). The points pu p^ • • • , pq where S 
is normal to the Xn+i axis is finite in number. Decompose /x (by 
means of a partition of unity) into a sum M = = MO+MI+ " * * +M«> 
where juo vanishes near pi, • • • , pq and where the juy 0 V 0 ) have dis
joint supports containing the respective pj. We first dispose of the 
integral h involving /xo. We have 

(4) /2 = I e{zy)mzdz% 

where ml = (d/dz)mZl SzzzSr\[xn+i^z], and m2=fxes,V<o(X)dSx. To 
study m2 further, decompose /x0^/ioi+Mo2+ • * • +Mon such that the 
support of /xo& (ft^w + l) lies in a part of the surface S with a repre
sentation (caret = omit) 

%k = ff/t(#l • • • & • • • Xn+l). 

Then w*= X X I w*^» where 

f ^ 
w*,* = I Mo* *dxi • • • (dx)Z • • • dxn+i. 

J -ao<xn+Uiz dxi • • • (to) fc • • • dxn+i 
From this it follows that mltk has compact support and has as many 
derivatives as JXQ or as the normal to 5 has, whichever is less. Integrat
ing by parts v times in (4), we see that J2 = 0 ( | y|~~v)> where v is the 
differentiability class of /* or the normal to 5, whichever is less. 

3. Estimates near horizontal part of surface. To study the integral 
with fij, j > 0 , simply write /i=My> a n ( i pi°k a coordinate system 
centered at point of tangency of the surface such that the tangent 
plane is given by #n+i = 0, the directions of principal curvature at the 
point of tangency are the xj axes (j^n + l) and the part of the sur
face containing the support of jx is given by xn+i — z(xi • • • xn). 

Since the first derivatives of z vanish at the origin, 

z = X aijXiXj + &(*)> 

where i? = 0 ( | # | 8 ) and the a^ are constants and form a symmetric 
matrix with eigenvalues Xi, X2, • • • , X» bounded away from zero. By 
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a lemma of Morse [4] a new s-coordinate system can be introduced 
near the origin, also centered at the origin such that 

The mapping x—>s can be so chosen so that its differentiability class is 
two less than that of z. Furthermore, it is asymptotic to the identity 
as x—»0, hence its Jacobian is close to one and the mapping is 1:1 for x 
near 0. Now the support of fj, is picked so small that the Jacobian is 
greater than J. 

Thus 

(5) ƒ = ƒ eCZ\js)y)4>(s)ds, 

where cj>(s)^fx(x(s))dS/ds and ds — ds\ • • • dsn. 
Now introduce the C00 function 

0(0 « 1 for |* | £-1, 

0(0 = 0 f or I /1 ^ a 

and j3(si)j8($2) • • • /3(sn)=5(s) and split J of (5) into the sum 
I = 73+/4, where 

^4 = I e(]C ^jSjy)<t)(s)B(s)ds. 

Now J3 is an integral of type h already discussed. 
Expanding <j> by Taylor's formula with the remainder 

[*(*) = *(0) + £ »«*" + E <?««*"]> 
L l^|a|gm—1 |a |=m J 

/« = *(0) fl f « ( E ^ ( # ; (»/•) 

E ft- n f «(Xi*/)*?̂ )*/ (=/«) 
l«l s m - l ƒ ^ 

+ E f e(Yé\js
2
jy)^a(s)saB(s)dx ( • ƒ , ) . 

y-i 

+ 
l g | a | g m ~ l 

l«l-

Now 
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f e(MÎy)(l - Ksj))dsj = of— 7—y 

(let Sj — ± \A? and integrate by parts), hence 

/ 5 = 7r^/2M(0) I y \-nl2K-H2 + 0(\y |~n) 

(where K = Gaussian curvature). Integrating the terms in I± by part 
an appropriate number of times shows that these terms are 
0(\y\ -»/2-i/2) o r better. In I7 the substitution Sj = ± y/i\ and integra
tion by parts [w/2] + l times shows that l7 = 0(y~[n/2]~l) (we take 
tn>n/2). Thus h = 0{y-n>2). 

4. Zero Gaussian curvature. Finally, consider the case where only 
some of the principal curvatures are bounded away from zero. The 
set A of points on 5 at which S is normal to the xn+i direction is no 
longer finite, but is compact. A may be covered by a finite system of 
neighborhoods Nj whose size can be chosen arbitrarily small. Intro
duce an appropriate partition of unity ao, ai, • • • , a a such that a0 

has support in S— UN,-, a, in Nj (jVO). The Fourier transform cor
responding to ao is of type I2 already estimated. To estimate the re
maining integrals, pick a point p in A and translate and rotate axes 
in xi • • • xn space so that the origin is at p and the surface is described 
by 

k 
Xn+X = z(xh • • • , Xn) = ] £ XjXj + 0 ( J x\Z). 

y-i 

Now consider the integral 

I e(z(xi • • • xn)y)(j)(xi • • • xn)dxi • • • dxk} 

where <j> = ix(x)dS/dx\ • • • dxni and where the support of 4> lies in the 
set 

max \ Xj\ ^ a. 

For Xk+i, • • • , xn fixed, the k — 1 surface 

xn+i = s(*i, • • • , * * ) , I #; I < 0, 1 ^ i ^ k 

in #i, #2, • • • , Xk, xn+i space has Gaussian curvature bounded away 
from 0, and this holds uniformly for \XJ\ <a , k + l^j^n, again pro
vided a is sufficiently small. Hence, from previous results, 

I e(z(x)y)<t>(x1 • • • xn)dxi • • • dxh = 0( | y |~*/2) 
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and this uniformly for \xj\ <a1 k + l^jèn. Hence 

I e(z(x)y)<t>(xi • • • xn)dxi • • • dxn\ 

= I I e(z(x)y)4>(x)dxi • • • dxk\dxk+i • • • dxn = 0(\ y\~kn), 

since the inner integral vanishes for m a x ^ i ^ n \XJ\ â # . 
FINAL REMARK. That the estimate of the Fourier transform is uni

form with respect to all directions of Y follows from a careful analysis 
of the proof. Namely, every time some quantity is to be made "suffi
ciently small," it can be made so uniformly with respect to the direc
tion of Y. 
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