
UNIFORM CROSS NORMS AND TENSOR PRODUCTS 
OF BANACH ALGEBRAS1 

BY JESÜS GIL DE LAMADRID 

Communicated by Walter Rudin, July 22, 1963 

1. Introduction. The present work grew out of an attempt to 
answer three questions. The first two were raised by B. R. Gelbaum 
[ l ] . One is: Which cross norms a of the algebraic tensor product 
A ®B of two Banach algebras A and B are compatible with multi
plication? Compatibility with multiplication means that 

(1.1) c*(tit2) ga( t i )«( tO, 

for every two tensors ti, tzÇiA ®B. The second question is: Is the so-
called least cross norm X, in particular, compatible with multiplica
tion? The third question was raised by B. R. Gelbaum and the author 
in [2]. I t is: Given two Banach spaces E and F each of which has a 
Schauder basis, for what cross norms a do the resulting complete 
tensor products E®aF have Schauder bases? 

The present state of knowledge concerning the first two questions 
is as follows. In [3] Gelbaum (see also Tomiyama [4]) defined on the 
algebraic tensor product A ®B of two Banach algebras a multiplica
tion which is the linear extension of the following multiplication on 
decomposable tensors. 

(1.2) (Ui ® V1){U2 ® V2) - U!Ü2 ® 7 i 7 „ 

where Ui, U2Ç2A and Vi, V2GB. Under this multiplication A ®B be
comes a complex algebra. The greatest cross norm 7 on A® B is 
compatible with this multiplication, which can be extended to A ® yB, 
turning the latter into a Banach algebra. I t is not known, in general, 
whether the tensor product A®yB of two semisimple commutative 
Banach algebras is semisimple, although this is the case for all known 
concrete cases. No single cross norm, of a general character and 
known to be different from 7, has been found that is compatible with 
multiplication. Gelbaum has shown that the nuclear (trace) norm of 
Grothendieck, which Gelbaum derived independently, is compatible 
with multiplication, but no single instance is known where that norm 
differs from 7. In particular, little seems to be known about the com
patibility with multiplication of the least cross norm X of A ®B. 

In the present work we exhibit a broad class of cross norms, includ-

1 Support of the present work by a National Science Foundation research grant 
(NSF G-19752) is gratefully acknowledged. 
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ing many of general character, which are compatible with multi
plication. A cross norm is said to be of "general character" (according 
to Schatten) if it is given by an abstract definition which applies to 
all tensor products of Banach spaces. In this sense, both X and y 
are of general character. It is shown, at least when all algebras in
volved have identity elements, that to every uniform cross norm (in 
the sense of Schatten [5]) of A ®B, not necessarily compatible with 
multiplication, there corresponds a cross norm (its associated cross 
norm) which is compatible with multiplication. Concerning the sec
ond question we exhibit examples in which X is compatible with 
multiplication, and examples in which it is not. We also give sufficient 
conditions for such a compatibility. 

The present state of knowledge concerning the third question is as 
follows. In [2] it was shown that Schauder bases of two given Banach 
spaces E and F define a system which serves as a basis for both 
E®\F and E®yF. Each one of these two tensor products had to be 
treated separately and the arguments were rather involved. The 
methods employed do not generalize to any other tensor products. 
No other cross norm ce of a general character is known to have the 
property that the existence of Schauder bases of both E and F implies 
the existence of a Schauder basis for E®aF. In the present work we 
show that every uniform cross norm has such a property. 

During the development of this work, as well as during many earlier 
occasions the author had the benefit of many illuminating conversa
tions with B. R. Gelbaum. 

2. The Kronecker product. Let E and F be two Banach spaces, 
and U: E—>E and V: F—+F be bounded linear operators. The Kro
necker product of U and Fis the operator U® F defined by the relation 

(2.1) U ® V(x ® y) = Ux® Vy, 

for x £ E and yÇzF. This notion generalizes the classical notion of 
Kronecker product of matrices. Let a be a cross norm of the algebraic 
tensor product E®F. With Schatten [5 ] we say that a is a uniform 
cross norm if for every tensor t(EE®F, given by 

n 

(2.2) t = 2><®y<> 

for XiGE and yiGF, we have 

(2.3) a[U ® V(t)] = al f^Uxi® Vy^\ g \\u\\ \\v\\a(t)y 

for every £/£(&(£), the algebra of all bounded linear operators of E 
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into itself and every F£(B(/0- If a is a uniform cross norm of E®F 
and £/£(&(£) and F£(B(F), then clearly the Kronecker product de
fined on E® F by (2.1) can be extended to an operator U® V of the 
complete tensor product E®aF into itself. We call this extended 
operator also the Kronecker product (with respect to a when there 
is any possible ambiguity) of U and V. 

THEOREM 2.1. Let A be a subalgebra of <B(£) and B a subalgebra of 
(&(F). Suppose that a is a uniform cross norm of E®F. Then the 
Kronecker product defines an algebraic isomorphism of the algebra A®B 
onto a subalgebra of (&(E®aF). 

The subalgebra of (&(E®aF) isomorphic to A ®B in Theorem 2.1 is 
called the Kronecker product of A and B. We denote by â the operator 
norm of B(E®aF). We also use this symbol to denote the norm 
defined on the Kronecker product of A and B by the operator norm 
of B(E®aF). By Theorem 2.1 this norm in turn defines a norm on 
A ®B, which we continue to denote by â. 

THEOREM 2.2. The norm âon A®Bis a cross norm which is compat
ible with multiplication. Hence A ®^B is a Banach algebra. 

3. Tensor products of arbitrary Banach algebras. We now extend 
the results of the previous section to arbitrary Banach algebras A 
and B. We do this by considering these algebras as algebras of oper
ators over themselves. This, however, is not always possible in the 
absence of identity elements. The following constructions represent 
a compromise which covers most of the interesting cases. By an 
approximate right identity of A we mean a subset N of the solid unit 
sphere of A with the property that every UÇ.A belongs to the clos
ure Cl(UN) of the set UN. Now, if A has no approximate right iden
tity, let E be the smallest Banach algebra with identity containing A 
isometrically. If A has an approximate right identity, we let E = A. 
We follow a similar convention with respect to the symbols B and F. 
We then have that A can be considered as a closed subalgebra of 
(B(E) by means of its left regular representation, and similarly for B 
and (&(F). Consequently, a uniform cross norm of E®F induces a 
cross norm a on A ® B, by the methods of the previous section, which 
is compatible with multiplication in A ®B. In this way A ®„B be
comes a Banach algebra. We study some properties of this algebra 
which center about the concept of semisimplicity. The discussion is 
based on the following two theorems which are generalizations of 
theorems of Gelbaum [ l ; 3 ] . 

Let E and i7, for the moment, denote arbitrary Banach spaces. An 
ordinary norm a of E ® F is one satisfying the relation X ^a g 7, where 
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X is the least cross norm [S] of E® F. An ordinary norm is ipso facto 
a cross norm. Let E' denote the dual (conjugate) space of E and sim
ilarly for F and F'. If x(~E and x ' G £ ' , we denote by (x, x') the action 
of x and x' on each other. Let a be an ordinary norm of E®F. It 
follows from the work of Schatten [5] that the algebraic tensor prod
uct E ' ® F' can be imbedded in (E ® aF)'. We write E' ® F' C (E ® « F)' . 
The action of a tensor xf ® y £ £ ' ® F f on t £ £ ® E , given by (2.2), is 
given by 

(3.i) <t,*'®/> = z<^,*%^/>. 

Let A be any Banach algebra. We denote by MA the space of all 
bounded multiplicative linear functionals on A under the weak* 
topology. 

THEOREM 3.1. Let A and B be two arbitrary Banach algebras and /3 
an ordinary norm of A®B which is compatible with multiplication. 
Then, for X'ÇLMA and y'ÇzMB, the assignment (#', yf)—>xf®yf maps 
the space MAXMB homeomorphically onto MA®$B* 

Let E and F be, again for the moment, two arbitrary Banach 
spaces, and a axi ordinary norm of E®F. Now both E®aF and 
E®\F contain the algebraic tensor product E®F. Because of the 
relation a^\ the identity mapping, considered as a mapping of 
E®F into E ® \ E , can be extended to a bounded linear transforma
tion <$£: E®aF—>E®\F. I t seems to be extremely difficult, in general, 
to determine whether *£ is one-to-one. If it is, we say that a is a faith
ful cross norm. 

THEOREM 3.2. Let A and B be commutative semisimple Banach alge
bras and j3 an ordinary norm of A ® B which is compatible with multi
plication. Then A®$B is semisimple if and only if ft is a faithful cross 
norm. 

Let now A and E and B and F be related as described at the begin
ning of this section and suppose that a is a uniform cross norm of 
E®F. The application of the above two theorems to â is made pos
sible by the following theorem. 

THEOREM 3.3. If a is an ordinary norm of E®F, then â is an ordi
nary norm. If a is faithful then â is faithful. 

COROLLARY 3.1. Let A and B be two commutative semisimple Banach 
algebras, and a a uniform faithful cross norm of E®F. Then A®^B 
is a semisimple commutative Banach algebra. 
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4. Examples and further properties. The least cross norm X of 
E®F, which extends the least cross norm of A®BC.E®F, is uni
form [5, p. 30, Lemma 2.6]. It follows that % is compatible with 
multiplication. Since X is clearly a faithful cross norm, it follows that 
the tensor product A ®\B of two commutative semisimple Banach 
algebras is a semisimple Banach algebra. 

We say that a uniform cross norm a of E®F is self-associated if 
a = â on A®BCE®F. 

THEOREM 4.1. If ais a uniform cross norm on E®Ft which is com
patible with multiplication on E®F, then a is self-associated. 

It turns out, a nontrivial fact, that the greatest cross norm 7 of 
E ® F is an extension of the greatest cross norm of A ® B QE ® F. Since 
7 is compatible with multiplication on E®F, then, by Theorem 4.1, 
7 is self-associated and we can write 7 = 7. A similar discussion is 
valid for the nuclear norm of Grothendieck [6]. For another discus
sion of this norm see [7], where it is called the trace norm. 

5. The least cross norm X. We now discuss the second of the two 
questions that motivated this study: given two Banach algebras A 
and B, is the least cross norm X of A ® B compatible with multiplica
tion? 

THEOREM 5.1. If either A or B (say A) is an algebra of f unctions (i.e., 
the Gelfand representation is isometric), then X is compatible with multi
plication in A®B, and A®\B is the corresponding algebra of B-valued 
mappings. A®\B is commutative and semisimple if B is commutative 
and semisimple. 

The least cross norm is not always compatible with multiplication, 
as the following example shows. Let A —1\, the algebra of absolutely 
summable complex sequences with convolution as multiplication. In 
such a sequence we shall only indicate terms which might not be 
zero. For instance U~ (So, Si) stands for an element of Zi, with Si = 0, 
for i>l. I t follows from a theorem of Grothendieck [6, p. 90, Exam
ple 2] that h®\B can be identified with the space of all uncondi
tionally summable sequences of elements of B. In [7, p. 30, Lemma 2] 
we have computed X in this case and we refer the reader to that arti
cle in connection with the computations that follow. The multiplica
tion on A ®B defined by (1.2) above becomes, in the case of h®B, 
convolution of sequences of elements in B. We now specialize B to be 
Zi also and show that X is not compatible with convolution in h®h. 
Let F o = ( l , - 1 ) and 7 i - ( l , l)Gh~B, and t = (F0 , Vi)eh®h 
= A®B. Now 
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(5.1) X(t) = max(|e0 - ex\ + |€o + € l | ) = 2, 

where the max is taken for — 1 ^ €0, ci^g 1. On the other hand 

X(t * t) = \(Vo * Vo, 2Fo * Vu Vi * Fi) 

= max[(50 + «O ô - 250€i - (8i - Ô0)e2 

+ (ôi + ô2)€0 + 252ei — (ôi — ô2)e2] 

ê 8 > [X(t)]2 = 4. 

In (5.2) the max is taken for all numbers represented by Greek letters 
ranging between — 1 and 1. This example shows that X is not compati
ble with convolution in h®h. We have not been able to determine 
whether in spite of this fact it is possible to turn h®\h into a Banach 
algebra under convolution and under a norm equivalent to X. 

6. Bases of tensor products of Banach spaces. We now examine the 
third question stated in the introduction. We consider two Banach 
spaces E and F, which, for the present consideration, can be either 
real or complex. Suppose that S = {#*-, x{ }, with a?»EE, x( GE' is a 
biorthogonal system of E defining a Schauder basis for E and simi
larly for A = [jj, yj } and F. In [2], we have shown that the biorthog
onal set {xi®yj, x( ®yj } can be well ordered by means of a single 
index to form a biorthogonal system 0 ® A = {uk®vk, uf

k®vi }, ukGE, 
VkÇzF, Uk G £ ' , vi Ç-F', which defines a Schauder basis for both E®*F 
and E®yF. These two tensor products had to be treated separately 
by methods based on their intrinsic properties. Now these two results 
can be obtained as consequences of the following general theorem be
cause both X and y are uniform cross norms. 

THEOREM 6.1. Let Q and A define Schauder bases for E and F, respec
tively, and suppose that a is a uniform cross norm of E®F. Then Q®A 
defines a Schauder basis for E®aF. 

It should be remarked that the order given Î2®A (the reader should 
consult [2] for details) is not completely arbitrary, as was amply 
demonstrated in [2]. There it was shown that even when Ö and A 
define unconditional bases, the basis resulting from Î2®A may not be 
unconditional. 
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In 1914, W. H. Young [4] introduced a modification of the Rie-
mann-Stieltjes integral which, for functions F and G defined on the 
real line with G of bounded variation on each interval and F suitably 
restricted, yields an additive interval function: 

(F) f F-dG+(Y) f°F'dG=(Y) f VrfG. 
J a J b J a 

In 1959, T. H. Hildebrandt [l] published a study of a certain linear 
initial-value problem involving these Young integrals, which ex
tended some of the earlier results of H. S. Wall and of the present 
author (see [2] for discussion and references). In 1962, there was 
discovered a connection between the Young integral and the interior 
integral as introduced by S. Pollard in 1920 [3], viz.f the systems 

U(x)~ U(c) + (Y)f*U-dH and 7(*) = 7(c) + ( J ) f W , 

with H a function from the real line to a complete normed ring, are 
naturally adjoint to one another [2, p. 326]. Both integrals are to 
be interpreted as limits in the sense of successive refinements of sub
divisions of the interval of integration. 

Suppose each of F and G is a function from the real line to the 
complete normed ring N. If each of F and G is of bounded variation 

1 Presented to the Society, July 18, 1963. 


