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One of the basic assumptions that is frequently made in the study 
of geometry (or physics) is that of homogeneity. I t is assumed that 
any point can be moved into any other by a transformation preserv­
ing the underlying geometrical structure (e.g., by a Euclidean motion 
in Euclidean geometry, an inhomogeneous Lorentz transformation in 
special relativity, etc.). The problem we shall treat in this paper is 
that of describing the possible differential geometries which are homo­
geneous or transitive in the above sense. We prefer the word "transi­
tive" as "homogeneous" already has a technical meaning. It should 
be noted at the outset that we will only discuss the local problem, 
regarding two geometries as the same if they are locally the same. 
The problem of describing the global possibilities for a fixed geometri­
cal structure is a problem of an entirely different order and is usually 
extremely interesting and difficult (the problem of moduli for Rie-
mann surfaces, the Clifford-Klein Raum problem, etc.). Actually, we 
won't even handle the local problem which involves various technical 
difficulties such as solving partial differential equations, worrying 
about domains of definition, etc. What we shall do is construct an 
algebraic model which will illustrate all the crucial geometric notions. 

Before giving a precise statement to the problem let us examine 
the situation in two dimensions. In order to list all the possible transi­
tive geometries we must first list the various types of differential 
geometry (projective, conformai, Riemannian, etc.) and then list the 
possibilities for each type. For instance, the Korn-Lichtenstein theo­
rem (asserting the existence of isothermal coordinates (cf. [lO] or 
[2S])) implies that all conformai differential geometries in two dimen­
sions are locally equivalent. In other words there is only one con-
formal differential geometry and it is transitive. 

How many different transitive Riemannian geometries are there 
in two dimensions? Here we are faced with a choice. The professional 
differential geometer will answer that there is a continuum, each 
parametrized by a real number—the curvature. Indeed a sphere of 
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radius one is clearly not isometric to a sphere of radius one thousand. 
On the other hand, the classical geometer will say that all spherical 
geometries are the "same." What is at issue is the following: let <£r 

be the dilatation map of the sphere, 5i, of radius one onto the sphere, 
Sr> of radius r. If r ^ l then <pr is not an isometry. On the other hand 
<j>r does carry the group of motions of one sphere isomorphically onto 
the group of motions of the second. That is, if T\ is any isometry of 
S\ then #r o Tx—Tro4>r where Tr is an isometry of 5 r. If we regard 
two geometries as the same if they are the same in this sense then 
there are essentially only three possibilities for transitive two-dimen­
sional Riemannian geometries: their groups of automorphisms are 
0(3) (spherical geometry), the Euclidean group (Euclidean geom­
etry) or 5/(2) (hyperbolic geometry). 

We can adopt a still more algebraic attitude and regard 0(3) acting 
on the sphere and 0(3) acting on itself via the adjoint representation 
as two different representations of the same abstract object, 0(3). 
We will therefore be concerned with classifying transitive geometries 
relative to three increasingly loose notions of equivalence which we 
may call "geometric equivalence," "algebraic equivalence," and "iso­
morphism." The precise definitions will be given later on. 

By now the reader must suspect that there is a close connection 
between the problems we shall treat and the (finite and infinite) 
groups of Lie and Cartan. Most of the results we shall present are 
contained, implicitly and explicitly in the fundamental papers [3], [4] 
and [5] of E. Cartan. In fact, we shall present an algebraic model for 
the transitive groups and this paper might well serve as an introduc­
tion to this subject. For a translation into modern language of many 
of the ideas of Cartan on this subject see [15], [27], or [29, Chapter 
VII]. In these papers, some of the algebraic notions that are intro­
duced here in a formal way are given geometrical definitions and 
interpretations. 

Our algebraic model is constructed as follows: we study the geom­
etry by studying its "infinitesimal automorphisms." We replace each 
infinitesimal automorphism (which is a vector field) by its Taylor 
expansion about a point. We are thus led to the study of formal (or, 
better, formal power series) vector fields. 

1. In all the algebraic considerations which follow we shall not 
specify the ground field over which we operate. In the applications we 
have in mind it will always be the real or complex numbers. Our 
arguments will be valid for any field of characteristic zero. As we will 
make free use of symmetrization and anti-symmetrization operators 
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(which involve dividing by £!), there may be some technical diffi­
culties in extending our results to the case of finite characteristic. 

Let F be a finite dimensional vector space. We denote by F{ F*} 
the ring of formal power series over V. I t is a local ring whose maxi­
mal ideal, F°{ V*}, consists of those formal power series which van­
ish at the origin (i.e., which have no constant term). We denote by 
Fk { V*} the ideal consisting of those power series vanishing to order 
k and remark that the sets Fk { V*} form a sequence of neighborhoods 
of the origin in the natural topology on F{ V*}. 

We denote by D(V) the Lie algebra of all continuous derivations 
of F{ F * } . Let d/dxl

t • • • , d/dxn be a basis of V and # \ • • • , xn 

the dual basis of V*. Since the polynomials are dense in ^ { 7 * } , to 
specify an element X of D(V) it suffices to give the values Xxi 

^X^x1, • • « , x»)GF{ F * } . We can thus write 

(1.1) X = t W ' " ^ ) ~ 
*-i dx% 

It is therefore clear that an element of D(V) can be regarded as a 
«formal vector field." If X= 2^X*(d/dx*) and F = J^Y^d/dx*) are 
two elements of D(V) then [X, Y]=Z~ £Z*(3/d*<) where 

(1.2) Z* = X) Y' X*> 
dxi dxf' 

D(V) will be our analogue of the "algebra" of all infinitesimal auto­
morphisms of a manifold M. We wish to study subalgebras of D(V) 
corresponding to the infinitesimal automorphism of some transitive 
geometrical structure on M. To see which subalgebras of D(V) we 
need, we study the structure of D(V) a little more closely. 

Notice that D(V) has a natural filtration: define the spaces 
D*(V)CD(V)by 

XG Dk(V) HXfEF*{V*} f o r a l l / G J ^ F * } . 

In terms of the representation (1.1) an element X belongs to Vk(V) 
if and only if all its X* belong to Fk{ F * } . If we set D~l(V)=D(V) 
then 

(1.3) [Dk(V), Dl(V)] C Dk+l(V) 

as can be easily verified from the definitions. In particular, P° (F) is 
a subalgebra of D(V) and Dk(V) is an ideal in D°(V). 

The space Dk(V)/Dk+1(V) can be naturally identified with 
V®Sk+1(V*) and (1.3) shows that the bracket operation on D(V) 
induces a pairing (which we continue to denote by bracket) of 
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V®Sk+1(V*)XV®Sl+1(V*)-»V®Sk+l+l(V*): 

(1.4) [V ® Sk+l(V*)> V ® Sl+l(V*)] C V ® Sk+w(V*). 

We can, in fact, regard V®Sk+1(V*) as a subspace of D(V) (con­
sisting of those X = ^X^d/dx*) where the X* are homogeneous 
polynomials of degree k + l). Then the pairing of (1.4) is just the re­
striction of the bracket operation of D(V) and the subalgebra 

P(7) = V+V®V* + V® S\V*) + • • • (direct sum) 

is just the algebra of polynomial vector fields. 
A case of (1.4) of particular importance for us is where k = — 1. We 

thus get a pairing 

[V, V ® S^iV*)] C F 0 Sl(V*) 

and the previous discussion shows that this pairing is the obvious one: 

(1.5) [v, w ®f] = w ®fv 

where v,w(EzV and ƒ is a homogeneous polynomial and where/» is the 
derivative of ƒ with respect to v. 

For any subalgebra, L, of D(V), we set 

n m L4-Lr\D\v)9 
( 1 . 6 ) t r . " < + i 

gL = L/L 
so that g£ can be regarded as a subspace of V®Si+l(V*). Since L is a 
subalgebra we have 

(1.7) [Là] CzT. 
In particular, g&C V® V* is a subalgebra of V® V* which we shall 

call the linear isotropy algebra of L and denote simply by g. 
The space gl1 is a subspace of F. We shall say that L is transitive 

if it is all of F. Thus L is transitive if i / L o = F. (Geometrically this 
means that we can "move infinitesimally" in every direction by an 
element of L.) 

The filtration {D*(V)} provides a system of neighborhoods for a 
topology on D(V) and (1.3) shows that the bracket operation is con­
tinuous relative to this topology. Our first objects of study will be 
the transitive subalgebras of D(V) which are closed in the above 
topology. 

Let <j> be a formal power series isomorphism of V onto W. (In terms 
of bases of V and W a formal power series isomorphism is given by 
n formal power series yl =<j>i(xl

t • • • , x
n) where the <t>{ have zero con-
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stant term and det \d4>l/dxj\ o,...,05*0. More abstractly, a formal 
power series isomorphism <t> is given by an isomorphism, 0* of 
F{W*} onto F{V*} carrying F°{W*} into F°{V*}.) The map <t> 
induces (or is defined by) an isomorphism 0* of F{ W*} onto F{ V*} 
and therefore an isomorphism, <£*, of D(V) onto D(W). For any 
XGD(V) and fEF{W*} we have 

(1.8) (fi*X)f = 4rl*(X4>*f). 

Let L be a subalgebra of D{V) and M a subalgebra of D(W). Let 
0 be a formal power series isomorphism of V onto TF. We say that 
<i> is an equivalence of L with M if <£*(L) = M". One of the main prob­
lems we shall be concerned with is that of deciding when two closed 
transitive algebras are equivalent. That is, we wish to obtain a com­
plete set of invariants of closed transitive algebras under equivalence. 
This corresponds to the classification of the transitive geometries 
under "algebraic equivalence" mentioned in the introduction. 

2. As we observed in the introduction, the classification of transi­
tive geometries splits into two steps : first the list of the different types 
of geometry then the classification of the various geometries of each 
type. We expect this to be reflected in our model. Accordingly, in this 
section we define the "type" of geometry associated with each transi­
tive closed formal power series algebra and then discuss the various 
possible types. 

Our approach will be based on the following remark: let <f> be a 
formal power series isomorphism of V onto W and let 1+ be the associ­
ated linear map of V onto W. (Thus 1+ is the "Jacobian of 4> at the 
origin.") Since 1$ is a linear isomorphism, it induces a linear map of 
V®Sk+1(V*) onto W®Sk+l(W*) which we shall also denote by / , 
(by abuse of language). Let L be a subalgebra of D(V) and M be a 
subalgebra of D(W) and suppose that <t>*(L) = M. Now g*L 

CV®Sk+l(V*) and g*MCW®Sk+1(W*). We claim that 

(2.1) gu-Uigù. 

To see this it suffices to observe that an element of Dk(W)/Dk+l(W) 
is determined by the map it induces of F°{ W}/F1{ W} into 
Fk{ W}/Fk+1{ W}. For a n y / € F ° { W] we have <£*ƒ=ƒ o l* mod Fl so 
that , by (1.8) 

(<t>*X)f = C(X(Jo h)) mod / + 1 { W*}. 

Equation (2.1) shows that (up to linear isomorphism of the space 
V) the spaces $tC.V®Sk+1(V*) are invariants of X. The sequence 
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of spaces {g*} (actually, as we shall see, only a finite number of 
them) describes the type of geometry given by L. 

Given a sequence of spaces g{CV®Si+l(V*) (with g~1== V) what 
conditions must they satisfy in order that there exist an L with 
g* = gL? Obviously, condition (1.7) must be satisfied. Tha t is, under 
the pairing (1.4) we must have [g*, gl](Zgk+l. Conversely, if the g{ 

satisfy (1.7) then the space V+g°+gl+ • • • +gk+ • • • is a sub-
algebra of P(V). Its closure is thus a transitive closed algebra L with 
&i=:gL- We now examine condition (1.7) a little more closely, espe­
cially the case k= — 1. For this purpose we introduce the following 
definitions: 

DEFINITION 2.1. Let P and Q be vector spaces and h a subspace oj 
Hom(P, Q). The space ft(1)CHom(P, h), called the first prolongation of 
h y consists of all P £ H o m ( P , h) satisfying 

(2.2) T(u)v = T(v)u for all u, v G P . 

Here r(w)E& = Horn(P, Q) so (2.2) makes sense. When P is 
finite-dimensional (the only case we shall consider) we can identify 
Hom(P, Q) with Q®P* and rewrite (2.2) as 

*<*> = Hom(P, h)C\Q® S2(F*). 

DEFINITION 2.2. We define h(k) inductively by setting hik+1) = h(k) l. 
The space h(k) is called the kth prolongation of h. We say that h is of 
finite type if hw = 0for some (and hence all larger) k. Otherwise we say 
that h is of infinite type. 

Recalling that for transitive L we have gL1=s V and using (1.5) 
we see that condition (1.7) for the case k= — 1, l~i+l can be ex­
pressed as 

(2.3) r+ 1Cg* ( 1 > . 

LEMMA 2.1. Let P and Q be finite-dimensional vector spaces and let 
&°CHom(P, Q) and h* ( i ^ 1) be a sequence of spaces satisfying 

¥+l C h<(1\ 

Then there exists an integer k such that 

hk+* « hk
(9) for alls è 1. 

This lemma is an immediate consequence of the Hilbert basis theo­
rem, cf. [27] for the proof which we shall not repeat here. 

In view of (2.3) and the lemma, we can associate to each transitive 
algebra L the smallest integer, r, such that gTLrS — gi for all $ è l . 
The integer r + 1 is called the geometric order of L. Our first set of in­
variants of L thus consists of an integer r, together with a finite se-
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quence g£, » • • , gr
L satisfying (1.7). This describes the "type of 

geometry" whose infinitesimal automorphisms are the elements of £> 
Conversely, suppose we are given a finite sequence gl « V,g°f • • • fg

r 

where giC"P®S<+1("P*) such that (1.7) holds whenever k, I and k+l 
are all less than r. We assert that there is an L of order r with gj, = g* 
(i^r). In fact, just set gr+* = gr(s) and check that now the g* satisfy 
(1.7) for all values of i. This follows by repeated application of 
Jacobi's identity and those cases of (1.7) which we do know. For in­
stance, suppose k+l = r+l and we wish to verify [g&, gz]Cgr+1==sgr(1). 
By definition, this amounts to showing that [V, [g*, g z]]Cg r . But 
by Jacobi's identity 

[M«*,g!]] = [[^,«*],s!] + [g*, [v,g']\ 
c [g*-1, rf + k*, g'-1] 

cr 
by (1.7). The general argument proceeds similarly and will be left to 
the reader. 

Thus starting with V, g°, • • • , gr satisfying (1.7) for k+l^r we 
obtain a sequence {g*} satisfying (1.7) for all i and thus an L with 

DEFINITION 2.3. TAe transitive closed formal algebra obtained in the 
above way from g°, • • • , gr is called the flat algebra of type g°, • • • » gr 

and will be denoted by L0°t...,/. 
Of course, instead of taking gr+* = gr("\ we might have considered 

the closure, L ' , of the algebra generated by V, g°> • • • , gr, in P(V). 
Arguments similar to the above show that g£/ = g* for i ^ r. However 
L' is smaller than L and will not be of order r in general. Frequently 
there isn't much room between L' and La°,...,ƒ, and one can list 
the possible types geometry which "start" with g°, • • • , gr. For in­
stance there are only four possibilities for geometries whose g° is all 
of V® F* (see below). 

A distinction, already made by Lie, is very important in geometri­
cal applications: 

DEFINITION 2.4. A subalgebra LQD(V) is called finite if dim L< «> 
and infinite otherwise. 

I t is clear tha t L is infinite if and only if L M O for all k. For transi­
tive L this can only happen if gz^O for all k. By Lemma 2.1 and 
Definition 2.2 we can therefore assert 

PROPOSITION 2.1. A transitive closed subalgebra, LCD(V), of geo­
metric order r is finite or infinite according as gl is of finite or infinite 
type. 
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3. Before proceeding with the general theory, we pause to give 
some examples illustrating the notions of the previous two sections. 

(A) Riemannian (or Lorentzian) geometries. Let ( , ) be a nonde-
generate symmetric bilinear form on V (of arbitrary signature). Let 
o(V) be the orthogonal algebra of ( , ). That is, AGo(V) if and 
only if 

(3.1) (Au,v) + (u, Av) = 0 

for all u, vE V. We assert that o(V)(1> = 0. In fact, for any T&o(VYl\ 
and any u, v, wÇ~V we have, by (3.1), the symmetry of ( , ) and 
(2.2), 

(T(w)v, u) = (T(v)w, u) = - (T(v)u, w) 

» - (T(u)v, w) = (T(u)wy v) 

= (T(w)u,v) = - (T(w)v9u). 

Thus (T(w)u, v) = 0 which implies that T = 0 as ( , ) is nonsingular. 
Thus, in particular, all Riemannian geometries are of finite type. 

This is the algebraic analogue of the famous theorem of Myers and 
Steenrod asserting that the group of automorphisms of a Riemann 
manifold is a (finite dimensional) Lie group. Actually this geometri­
cal fact is a fairly easy consequence of the algebraic one via an elegant 
argument due to Kobayashi. For a presentation of these results cf. 
[IS] or [29, Chapter VII, §4]. 

The flat algebra L0(y) is, of course, nothing other than the algebra of 
infinitesimal Euclidean motions, 

(B) Conformai geometries. Let ( , ) be as before and let co(V) 
denote its conformai algebra. That is, A G.co(V) if and only if 

(3.2) (Au, v) + (u, Av) = \(u, v) for all u, v G V 

where X is some scalar depending on A. (Notice that for those uy v 
with (u, v)=0 (3,2) reduces to (3.1).) We now compute co(F)(1). 
For any TÇîco(V)W we get a linear form X(») defined by 

(T(w)u, v) + (u, T(w)v) = \(w)(u, v). 

We thus have a linear map of co(F)(1)~>F*. This map is clearly 
injective since a T lying in its kernel would lie in o(F)(1) and thus 
vanish by (A). Let us show that it is also surjective. To this effect 
we observe that ( , ) induces an isomorphism of V onto V*. Thus 
wGF is mapped onto w*GF* where (v, w*) = (p, w). If we replace 
( , ) by X( , ) then under the new isomorphism u gets sent into Xw*. 
In particular, the isomorphism of V® V* onto V*® V induced by 
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( , ) is independent of the scalar X, i.e., is an invariant of co(V). Let 
us denote this isomorphism by <£. For any u* £ V* let y(u*) 
G H o m ( F , Hom(F, V)) be defined by 

y(u*)(v) = v ® u* — <£(w* ® v) + (v, u*)I 

where / is the identity. We claim that y(u*)Çïco(V)(1). In fact, 

y(u*)(vi)v2 = (vi, u)v2 + (v2, u)vi — (t>i, v2)u. 

Thus co(F) (1) is isomorphic to V*. 
Let us compute CÖ(F) ( 2 ) . For any four vectors u> v, x, and y, and 

for any JHECÖ(F) ( 2 ) we have 

(TO, v)«, y) + (x, T(u, v)y) = XttV(^, y). 

Here XMV is a symmetric bilinear form in u and v depending on T, If 
X vanishes then T belongs to o(V)(2) and hence must vanish. Since X 
is symmetric, to show that a given X vanishes it suffices to show that 
\uu vanishes identically. Let us choose u and v with (&, v) = 0. Then, 
since (3.2) reduces to (3.1) in this case, we have 

Atm(fl> v) = 2(T(uu)v, v) 

= 2(T(uv)u} v) 

« - 2(T(uv)v, u) 

= - 2(T(vv)u, u) 

Thus for every pair of orthogonal vectors we have XWM(tf, v) 
= — \n(u, u). If d i m ( F ) ^ 3 this obviously implies that X = 0. In 
other words co(V)™ = 0 if dim 7 ^ 3 . 

If dim V=2 then it is easy to check that co(V) is of infinite type. 
This accounts for the difference in conformai geometry between two 
and more dimensions. 

If dim V>2 then the flat algebra L„cr)~V+co(V) + V* is known 
as the Möbius algebra. I t can be identified with the Lie algebra of 
the group of conformai transformations of the sphere whose dimen­
sion is d im(F) . Notice that there are two types of geometries with 
g° = co(V). The conformai geometries whose geometrical order is one 
(thus with g1 = co(F)(1)) and the geometries of order 2 where g1==0. 
There are no further possibilities since co(V)il)~V* is irreducible 
under the action of co{V) and the case k~0 of (1.7) implies that gl

L 

must be invariant under the action of g%. The flat algebra Lc«cn,o is 
just the Lie algebra of the group of similarity transformations of 
Euclidean geometry. 
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(C) Let us consider the various types of geometries whose g° = gl( V) 
= V® V*. There is obviously only one first order structure—the full 
algebra D(V). To study the possible second order structures we 
must describe the decomposition of V®S2(V*) into subspaces in­
variant under the action of gl(V). One obvious such subspace is 
sl(Vyi). The flat algebra Lguvwon™ consists of all formal vector 
fields with constant divergence. The corresponding geometrical struc­
ture is given by a volume element determined up to constant factor. 
It turns out, using the methods to be developed below, that this is the 
only gl(V), sl(V)(1) structure (and indeed the only structure starting 
with gl(V), sl(V)M (cf. [27, Chapter V])). 

Since gl{V) is reductive, we can find an invariant complement to 
sl(V)W in V®S2(V*). We now describe it explicitly. Let a be the 
map of V ® V* ® V* onto V ® S2(V*) given by a(v ® u* ® w*) 
~v®(u*®w*+w*®u*). For any w*£F*, let y(u*)=<r(I®u*), 
where ƒ £ V® V* is the identity transformation. Then 

y(u*)(v) = v ® u* + (v, u*)I. 

The map y is clearly injective and the space y(V*) is an invariant 
subspace of g/(F)(1) which we shall denote by pl. It is obviously 
complementary to sl(V)a\ Let us compute pl(1\ Let T be in pl{1) and 
vu V2&V. Let r , l = 7(«i*) and TV2 = y(uf). Then 

Tvin = V2 ® Ui* + {Vi, Ui*)I 

and 

TViV1 = vi ® uf + (v2, u2)I 
so that 

TVlV2v2 = 2(»2, uf)v2 = TV2HV2 = 2(v2, u?)vi + (vi, uf)v*. 

If dim V> 1 then for any nonzero V\ we can choose V2 to be linearly 
independent of Vi. Then the last equation implies that (#2, u*) = 0 and 
(vi, U2*) = 2(v2, w*). Interchanging Vi and V2 we conclude that w* = 0. 
Thus p1 =0. For dim V> 1 the algebra 

L0«n. f = V + gl(V) + pl ( = F + gl(V) + V*) 

is the algebra of infinitesimal collinations of projective space. 
It turns out, cf. [27, Chapter V], that there are four possible geom­

etries with g° = gl(V), namely D(V), LgKyi.snv)1, which are infinite, 
projective geometry and affine geometry ( = 1,̂ (7),0) which are finite. 

4. We return to the general theory. The next main problem on the 
agenda is how to decide when two L's with the same g» are equivalent. 
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In order to develop the appropriate machinery we first consider a 
special case of this problem, namely, when is a given L flat? That is, 
is L equivalent to L0L,>-<,gL

r? If L is flat then it has the same alge­
braic structure as the flat algebra. In particular, it must be possible 
tö choose a complementary abelian subalgebra, L, to the subalgebra 
L°. Let us examine the obstructions to the choice of such an L. 

Let V be some (vector space) complement to L° in L. For any 
u, v etc. in F we denote by ü, SJ, etc. the element of V with ü/LQ = u, 
v/L°<=v and so on. Our choice of V induces a map Z of V/\V—^V 
defined by setting 

(4.1) c{u /\v) = w where [u7 v] = w + I with l £ L°. 

Let us see how much this map depends on the choice of V. Let t̂  
be a second such choice. The pair F, V yields a map 5 ( = Sv,v) of 
F—»g defined as follows: for each t>£ V we hâve v— tf£ZA The image 
of d — î in L°/Lx^=g is what we call S(z>). Now let üs compare Z and ê. 
For any w and z i £ F w e have 

[#> £*] — IX tf] = [# — $, z)] + [û, v ~ v] 
= £(«)•» - S(v)u mod ZA 

We thus have 

(4.2) c(u A v) - c(u A t») = S(u)'V - 5(v) •«. 

Conversely, given any 5£Hom(V", g) it is clear that we can choose 
V and V so that S=Sv,v so that (4.2) represents the actual degree of 
indeterminancy of c. I t is sometimes more convenient to write (2.1) 
in more succinct form: let d be the map of g® F* = Honl(Fj g) 
->F®A 2 (F*) = H o m ( F A F , F) given by d(S)(uAv) = S(u)v-S(v)u. 
Then we have 

(4.3) 2 - « = ö(5r,r). 

In particular, 2— êE.d(g® V*). This means that we get a well-defined 
element of V®f\2(V*)/d(g® F*) which we call the first order struc­
ture constant of L* I t is clear that if L is flat, this constant must 
vanish. 

The map Z is not completely arbitrary. We have the Jacobi identity 
of L, 

[[u, efl, w] + [[v, w], ü] + [[w, ü], v] « 0, 

to take into account. Let us define the map & G H o m ( F A F , g) 
= g® A2(F*) by letting l(uf\v) be the image in L*/Ll of the element 

[ü, v] — c(u A v) 
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of L°. Then Jacobi's identity implies 

Z(Z(u A v) A w) + c(c(v A w) A u) + Z(Z(w A u) A w) 
(4.4) _ 

+ ^ ( ^ A fl)w + 6(» A w)w + 5(w A w)v — 0. 
We shall call (4.4) Bianchi's identities. We can also write (4.4) in 
more succinct form : let Z-+Z2 be the quadratic map of Horn ( F A V, V) 
- * H o m ( F A F A F , TO given by 

z\u A v A w) = c(c(u A ») A w) + £(£(» A w) A «) + £(£(w A «) A ») 

and let 3 : g®A2(F*)-->F® A3(F*) be given by 

d(b)(u A » A w) = i (« A »)w + J(v A H>)u + b(w A u)v. 

Then we can rewrite (4.4) as 

(4.5) c2Ed(g® A2(F*)). 

I t is an elementary algebraic exercise to verify that if Z satisfies (4.5) 
then so does ê whenever Z and ô are related by (4.3). 

For any XE:g choose an I G ^ ° whose image in L°/L1 = g is X, 
Applying Jacobi's identity to [J?, [u, v]] shows that 

(4c.6)XZ(u A v) = Z(Xu A v) + Z(u A Xv) + S(X)(u)v - S(X)(v)u 

where S(X)ÇzHom(V, g). In terms of the induced action of g on 
V® F*® V* we can rewrite (4.6) as 

X£ = dS(X). 

Equations (4.2)-(4.6) should be called the (first order) Cartan 
structural equations of L. They are (modulo changes in notation) 
equations (19) and (20) of [3] or (19) and (20) of [7]. 

Suppose that c = 0. We can thus choose a subspace VC.L so that 
c = 0, i.e. [ü, Â ] £ L ° for all w, » G F . For any such choice of V we 
get a map Z1 of F A F—»g defined by 

Zl(u A n ) = [fi, $]/£ ' . 

Again, c1 depends on our choice of V and we can explicitly describe 
how much it depends on the choice. In order to give a convenient 
résumé of the appropriate facts we introduce some homological nota­
tion. 

Consider the map of 

V ® V* ® • • • ® V* ® V* ® • • • ® V* 

&-times /-times 

into 
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V ® F* ® • • • ® F* ® F* ® • • • ® F* 

(& — 1) times (/ + 1) times 

given by the associative law of tensor multiplication (move one factor 
past the big tensor product sign). Now V®Sk(V*)®hl(V*) can be 
regarded as a subspace of the first of these spaces and there is an 
obvious projection (given by symmetrization and anti-symmetriza-
tion) of the second of these spaces onto V®Sk~~l(V*) ® hl+1 (V*). Byre-
striction and projection we thus get a map, â, of V®Sk(V*) ® A1 (F*) 
into F®S*- 1(F*)®AZ + 1(^*)- From the definitions, d2 = 0. Now let 
g ° C F ® F * , g1, • • • , g», • • • be a sequence of spaces satisfying (2.3). 
Since gkCV®Sk+1(V*) the space 

C*+i.i = g* ® A'(F*) 

is a subspace of F®S*+ 1(V*)®A' (F*). We claim that ôC*+1'f 

CC*-^1 . In fact, for any ÉGC*1»1 we have 

dt(vu • • • , n+i) = 52(- l ) '{fr i i • ' • • < , • • • , *i)t>< 

and each summand on the right lies in g**"1 by virtue of (2.3). We 
thus get a differential operator d mapping Ck+l'l—>Ck>l+1. The cor­
responding homology group Hk*l(g°, • • • , g\ • • • ) we shall call the 
Spencer homology groups of the geometrical type (g°, • • • , g\ • • • ). 
Although these groups are implicit in the work of Cartan they seem 
to have been first made explicit in the fundamental paper of Spencer 
[28] on deformation of structures. I t turns out that the crucial ob­
structions to flatness lie in Hk>2. 

LEMMA 4.1. Letg°CV® F*, g1, • • • ,g% • • • be a sequence of spaces 
satisfying (2.3). Then for sufficiently large k, Hk*l(g°, • • • , g*, • • • ) 
= 0. 

The proof of this lemma reduces to standard facts in commutative 
algebra (cf. [27] for the details). Notice that the case 1=1 of the 
lemma is just Lemma 2.1. 

An immediate consequence of Lemma 4.1 is that there are only a 
finite number of obstructions to the construction of an abelian com­
plement to LQ. Actually we can say a lot more. Let R = R(L) be the 
smallest integer such that Hk^(glt • • • , gi,, • • • )=Hk>2(g°L, • • • , 
gL - - -)=Hk>*(g0L, • • • , a, • • • ) = 0 for all k^R. We call R the 
structural order of L. I t depends only on the geometrical type of L 
and we clearly have r SR. The theorem that we wish to assert says 
that a knowledge of L "up to order R" determines L up to equiva­
lence. To make this precise we introduce the following definition: 
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DEFINITION 4.1. Let V be a finite dimensional vector space and 
gdV®V* be a Lie algebra of linear transformations on V and 
cÇzV®h2 (V*)/ô(g® F*) where some (and hence every) c £ F ® A 2 (V*) 
with c/d(g®V*) = c satisfies (4.4)-(4.6). The triple (V, g, c) is called 
a truncated Lie algebra. If (W, h, d) is a second truncated Lie algebra, 
a bijective linear mapf /, of V~>W is called an isomorphism if 1(g) = h 
and 1(c)—d (where I acts in the obvious way on the appropriate spaces). 

Notice that if L is a transitive subalgebra of D(V) then there is an 
obvious ch such that (L/Lk, gl, ch) is a truncated Lie algebra. In fact, 
(1.4) shows that there is a well defined map [L/Lk, Lk/Lk-l]->L/Lk 

so that gl=*Lk/Lk+1 acts on L/Lk (acting trivially on L°/Lk). Exactly 
the same argument as at the beginning of this section (choosing a 
complement to Lk, etc.) gives the existence of ck satisfying the ap­
propriate identities. 

THEOREM I. Let LQD(V) and MQ.D(W) be two transitive closed 
formal Lie algebras on vector spaces V and W of the same dimension. 
Let R(L) be the structural order of L and R(M) the structural order of M. 
Then L and M are equivalent if and only if R(L)=R(M) and 
(L/LR(L\ gfL\ cRW) is isomorphic to (M/MRw\ g^M\ cRW). 

The proof of Theorem I will be presented in §7 after we have dis­
cussed the notion of isomorphism of abstract algebras. A few remarks 
are in order now: 

(a) For any gC.V®V* let us denote by Hk>l(g) the groups 
Hk>l(g, g (1\ g(2), • • • )• Let us say that g is 3-acyclic if Hkl(g) =Hk2(g) 
= 0 for all fe^ 1. A special case of Theorem I would assert that two 
first order L's with the same acyclic g are equivalent if the correspond­
ing truncated algebras of first order are isomorphic. This is essentially 
the content of the italicized statement of §17 of [3]. The statement 
there is more general because Cartan considers intransitive groups as 
well as we have restricted our attention to the transitive groups. 
Cartan's assumption about the algebra g is that it is "involutive" 
which is necessary for the application of his existence theorem—the 
Cartan-Kâhler existence theorem (cf. [3], [17] or [18]). For a mod­
ern definition of involutiveness, cf. [24] or [27]. For all our present 
purposes the condition that g be 3-acyclic suffices. We will therefore 
not discuss involutiveness here.2 The Cartan-Kuranishi prolongation 
theorem (cf. [18]) which asserts that eventually gk is involutive is 
replaced by Lemma 4.1. Theorem I is a version of the statement of 

a It turns out (according to a letter from Serre, cf. Appendix to this paper) that 
involutiveness is equivalent to Hkl(g) = 0 for all k and /. 
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§19 of [3] (again restricted to the transitive case). Actually that 
statement corresponds more closely to our Theorem II below. 

(b) The hypotheses of Theorem I are frequently very difficult to 
verify in practice. For instance, let us consider the extreme case where 
g = 0 so that c: V/\V—>V actually defines a Lie algebra structure 
on V. The "geometric" content of Theorem I in this case is essentially 
the assertion that two Lie groups are locally isomorphic if and only if 
their Lie algebras are isomorphic. While this assertion is not a com­
plete tautology, it isn't very exciting, mainly because no one knows 
how to classify all Lie algebras up to isomorphism. Of course we do 
know how to classify some special kinds of Lie algebras (e.g., the 
compact ones, the semi-simple ones, etc.) and then Theorem I takes 
on some meaning. I t is in this sense that Theorem I solves the prob­
lem of classifying transitive geometries. 

(c) We should repeat the fact that all we are doing here is com­
pletely formal. However Theorem I can be stated as a theorem in 
geometry and as such has been proved under various additional tech­
nical hypotheses (cf. [27, Theorem 3.2 and Theorem 5.3]). The trouble 
is that in the geometrical case, the proof of Theorem I involves 
solving partial differential equations and we don't as yet have a 
suitably general existence theorem. Under the assumptions of analy-
ticity everything goes through nicely (cf. [27, Theorem 3.2]), but the 
C°° picture is still incomplete. 

5.3 So far, we have been discussing the formal version of the prob­
lem of what we called "algebraic equivalence" of geometrical struc­
tures in the introduction (which in two-dimensional Riemannian 
geometry corresponds to identifying all spherical geometries). We 
will now briefly discuss the problem of "geometrical equivalence" 
(where we distinguish between spheres of different radii). That is 
what Cartan called the "general equivalence problem" in [4] and 
[6]. I t has been discussed more recently in [2], [9], [13], [lS], [20], 
[27], and [29]. Since this problem has been discussed so extensively 
from a modern viewpoint in the recent literature, we shall give here 
only a few indications of the theory; in particular, we shall, for sim­
plicity, restrict attention to structures of (geometrical) first order. In 
order to motivate the definition we make below, we observe that in 
order to pick out a specific sphere among all spheres, it suffices to 
specify the Riemann metric at a single point. More generally, if we 
know the family of automorphisms, the geometrical structure is 
specified by a choice at a single point cf. the discussion in §2 of [27]. 

3 This section has been included only for the sake of completeness. None of the 
rest of the paper depends on it. 
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Let Kn be a standard w-dimensional vector space and Gl(n, K) the 
group of all nonsingular linear transformations of Kn. Let V be any 
^-dimensional vector space. We denote by £F( V) the space of bijective 
linear maps of Kn onto V. The group Gl(n, K) acts in the obvious 
way on $(V): for any p(E$(V) and any aÇEGl(n, K) we set pa{%) 
— p(ag) for all ££i£w . If W is a second vector space and / is a bijective 
linear map of V onto W then / maps ^(F)—»SF(JF) by setting l(p) 
— lop for any pÇ^{V). This map obviously commutes with the 
action of Gl(n, K), i.e., lopa—(l(p))a. 

Let © be a subgroup of Gl(n, K). A choice of pG$(V) gives a 
representation of © on F. If q = pa where # £ ® then the representa­
tion given by q differs from the one given by p by the inner automor­
phism by a. In particular, a choice of orbit of ïï(V) under © deter­
mines a group, G, of linear transformations of V. The group G is 
isomorphic to © and the isomorphism is determined up to inner 
automorphism of ®. 

DEFINITION S.l. Let & be a connected Lie subgroup of Gl(n, K). 
By a {formal) transitive ©-structure, (B@(F) on V is the pair consisting 
of an orbit 0(F) of $(V) under ®, whose associated group is G, and a 
closed transitive LC.D(V) of geometrical order one such that g~gl is 
the Lie algebra of G. 

DEFINITION 5.2. Let (B©(F) and (B@(TF) be structures on V and W 
respectively, where (B@(F) = (0(V), L) and (B©(W0 = (©(WO, M). A 
formal power series isomorphism, </>, of V onto W is called a (geometri­
cal) equivalence of (B©( V) and (B©(W) if<j>*(L) = M and 1^(6 ( V)) = 6(W). 

The methods of §§3 and 4 can be used to decide when two ®-
structures are equivalent. Actually, this problem is considerably sim­
pler than tha t treated in the previous two paragraphs. The reason is 
that all of the invariants can be brought back to Wn. Let us illustrate 
by considering the case where g is 3-acyclic. (This condition clearly 
depends only on ®.) Let (B@(F) = (0(V), L) be a ©-structure, and let 
c G F ® A 2 (F*)/ö(g<g>F*) be the structure constant of L. Any 
pÇ~Q(V) is an isomorphism of Wn onto V and as such carries c over 
into cGTFw(g>A2 (Wn*)/d(%® Wn*) where fi is the Lie algebra of ®; 
and it is easy to see that this c is independent of the choice of p G 6 ( V). 
We thus get a constant, c, lying in a standard space (depending only 
on ®) as an invariant. The problem of verifying the hypothesis of 
Theorem I has disappeared: if (B@(W) = (0(W), M) is a second 
©-structure with the same c, then the truncated Lie algebra structures 
on V and W determined by L and M are automatically isomorphic 
and, in fact, isomorphic by an / with l(0(V)) = 0(W). 

6. We now study the "abstract" object whose "representations" 
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are the transitive closed L of §§2—4. Let L be a Lie algebra and L° a 
subalgebra of L of finite codimension. We then define L1 by 

(6.1) X E L1 if and only if [X, 7] G L° for all Y G L. 

It is easy to check that L1 is an ideal in L°. Furthermore, gL=:L0/Ll 

acts in a natural way on L/LQ. In particular, L1 is of finite codimen­
sion in L° (and therefore in L). In general, define L i+1 (i^O) by 

(6.2) X G £<+1 f/ <wi only *ƒ [X, Y] G L» /of a» Y G L. 

It follows easily from induction and Jacobi's identity that 

(6.3) [L'fL*] CV+K 

If we set gi^V/L**1 ( i ^ l ) and éZ1 = L/LQ then we have 

(6.4) [ * L , & J C * L , 

and, in particular 

f, *\ *+i ^ * ( 1 ) 

(6.5) & C â , 
just like (1.7) and (2.3). 

We can define a topology on L by letting the Li be a fundamental 
system of neighborhoods of 0. Equation (6.3) implies that the Lie 
algebra structure is compatible with this topology. 

DEFINITION 6.1. An abstract transitive Lie algebra is a Lie algebra, 
L, with a compatible topology such that 

(i) L is complete and separated in the {uniform structure associated 
with) the topology and 

(ii) L possesses a subalgebra L° of finite codimension such that the L* 
defined by (6.2) form a fundamental system of neighborhoods of the 
origin. 

Any subalgebra possessing the properties described in (ii) will be 
called a fundamental subalgebra. 

REMARKS, (a) The fact that L is separated means that for any 
fundamental subalgebra, L°, we have 

(6.6) r iL*= {0}. 
* - i 

(b) If L° and M° are fundamental subalgebras then the definition 
implies that for any j there exist i and k such that 

(6.7) L O ATOL*. 

On the other hand, if (6.7) holds, then (6.2) implies that 
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Li+9 D M>+9 D Lk+9 

for all integers 5 > 0. Thus if L° is a fundamental subalgebra and M° 
is such that (6.7) holds for some i, j , and k then M° is a fundamental 
subalgebra. 

(c) If L is a transitive complete subalgebra of D(V) for some vec­
tor space V then L, together with the topology induced by D(V) is 
clearly an abstract transitive Lie algebra. 

DEFINITION 6.2. Let L and M be abstract transitive Lie algebras and 
let <j>: L—>M. We say that <j> is a homomorphism if <$> is continuous and 
is a homomorphism of the underlying Lie algebra structures. We say 
that (j> is an isomorphism if it is a homeomorphism and an isomorphism 
of the Lie algebra structures. An isomorphism of L with a complete 
transitive LC.D(V) is called a realization of L. 

Observe that any realization of L picks out a distinguished L°. 
DEFINITION 6.3. Let L be an abstract transitive Lie algebra. A funda­

mental subalgebra L° is called regular if 

(6.8) Hkl(L«/L\ Ll/L\ • • • ) = 0 for I = 1, 2 and 3, andk>0. 

In particular, if L° is a regular fundamental subalgebra then 

L i + 1 /L i + 2 = (Lyi/-*-1)*1*. 

According to Lemma 4.1 and remark (b) above, Lk is a regular 
subalgebra for sufficiently large k. Thus every L possesses a regular 
subalgebra. 

Just as in §4, the Lie algebra structure of L induces a truncated 
Lie algebra structure on L/L°. We can now state the main theorems 
of our subject. 

THEOREM II (EXISTENCE AND UNIQUENESS THEOREM). Let 

(V> g> c) be a truncated Lie algebra structure with Hkl(g)=Hk2(g) 
= Hkz(g)=0 for all k<£l. Then there exists an abstract transitive Lie 
algebra L, with a regular fundamental subalgebra LQ, such that the trun­
cated Lie algebra structure induced on L/L° is isomorphic to (V, g, c). 
Furthermore, if M, M° is a second such abstract transitive Lie algebra 
and regular subalgebra then there exists an isomorphism, <j>, of L onto 
M carrying L° into M°. In particular, two abstract Lie algebras, L and 
M are isomorphic, if and only if they possess regular fundamental sub-
algebras, L° and M° such that the truncated Lie algebra structures in­
duced in L/L° and M/M° are isomorphic. 

THEOREM III (REALIZATION THEOREM) . Let L be an abstract transi­
tive Lie algebra and L° a fundamental subalgebra. Then L is isomorphic 
to a transitive closed subalgebra, L, of D(L/L°). Furthermore, L is 
determined up to equivalence. 
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Notice that Theorems II and III together imply Theorem I. In 
fact, under the hypotheses of Theorem I, Theorem II assures that 
L and M are isomorphic as abstract algebras and Theorem III im­
plies that the represented algebras are equivalent. The proofs of 
Theorems II and III will be presented in the next sections. 

Let LQD(V) and MQD(W) be transitive closed subalgebras 
(where V and W may be of differing dimensions). Suppose that L 
and M are isomorphic as abstract algebras. Then Theorem III im­
plies that we can, by choosing small enough fundamental subalgebras, 
find realizations of L and M which are equivalent. Geometrically, 
choosing a "smaller" subalgebra amounts to realizing the abstract 
algebra on a "bigger" space. If L is already given as a realized alge­
bra, L, then the "bigger" realization can be called a "prolongation" 
of L. This accounts for Cartan's definition in §18 of [3], that "two 
groups are called isomorphic if they possess prolongations which are 
equivalent." 

The uniqueness part of Theorem II corresponds to the italicized 
statement in §19 of [3] and the "second fundamental theorem" in 
[7]. The existence part corresponds to the statement of §24 in [3] 
and the "third fundamental theorem" in [7]. Again, our versions are 
restricted to the transitive case whereas Cartan considers the "in­
transitive groups" as well. 

7. We now proceed to the proof of Theorem II. Let (V, gf c) be a 
truncated Lie algebra. We let ga)(Cg®V*) act on V+g by acting 
trivially on g. In this way g(1) can be regarded as an abelian Lie 
algebra. We say that a truncated Lie algebra (V+gf g(1), cl) is an 
extension of ( V, g, c) if we can find representatives c of c and c1 of cl 

so that 

(7.1) c\u A») = Z(u A v) mod g for all u, v G F, 

(7.2) &(X A^) = ! • » mod g for all X G g and v G V, 

and 

(7.3) c\X A Y) = [X, F] for X, F G g. 

Let g be a subspace of V® V*. We say that V acts trivially on a 
subspace Fo of V if Xv = 0 for all XGg and o6F 0 . We denote by 
g | V/VQ the induced space of linear transformations of V/Vo. 

LEMMA 7.1. Let gQV®V* act trivially on VQC.V and satisfy 
Hkl(g\ V/Vo)~0 for some k and all l^l^n. Then Hkl(g) = 0for the 
same range of k and L 
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PROOF. I t follows immediately from the definitions that Xv0 — 0 
for any X£g ( f c ) and z>o£ VQ. Our proof of the lemma will therefore 
be the same for all k and will be by induction on n. For » = 1, let 
£ £ H o m ( F , g<*>) be a cycle, i.e., satisfying 

%(u)v — %(v)u = 0. 

If we take w 6 Fo in this equation we see that %(u) = 0 for all wG F0, 
i.e., £ defines an element | of Hom(F/Fo , gik)) which is clearly a 
cycle. We can write % = drj where ?5(Eg(A;+1). We then have %(u)=ri'U 
and are done. Now assume the lemma for the case n — 1. Let 
££g (Aî )®An (F*) be a cycle, i.e., satisfying 

Since g(k) acts trivially on VQ, if we fix z>n+i£Fo then £ ( • • • , vn+i) 
£g ( f c )® A***1 (F*) is a cycle. We therefore can write 

where i7(vw+i)Eg(fc+1)®An-2 (F*). Here rç(0 can be regarded as an 
element of Hom(F 0 , g*+1®Aw-2 (F*)). Extend rj to be defined on 
all of F so as to get an element of Hom(F, g(*+»®AWr-2 (F*)) 
^ ( M - D ® / ^ 2 (7*) 0 7* a n ( j anti-symmetrize so as to obtain an ele­
ment of g ^ + ^ ^ A ^ 1 (F*) which we shall continue to denote by 77. 
Then £ —drj is a cycle which vanishes if any one of its arguments lies 
in F0. I t therefore defines a cycle of g w ® A n ( (F/Fo)*), and there­
fore is a coboundary, as in the case w = 1. 

LEMMA 7.2. £e£ (F , g, c) &e a truncated Lie algebra, and let <fi: F—>F 
be a nonsingular linear transformation satisfying cj>Xu = Xu = X<i>u for 
allXÇiganduÇz V.Letcbearepresentativeofc.Let(j>*c^Hom(VA V, V) 
be defined by <j>*c(u/\v) ~<t>c(<lrlu/\<jrlv). Then <{>*c defines a truncated 
Lie algebra structure (F , g, <£*) on V (relative to g). This structure is 
independent of the choice of c and <j> is an isomorphism of ( F, g, c) with 
(V, g, 0*e). 

The proof of this lemma is obvious from the definitions. 

LEMMA 7.3. Let (F , g, c) be a truncated Lie algebra where g acts 
trivially on the subspace F0. Suppose c(V0AF0)C^o for some (and 
hence all) representatives of c and that Hki(g\v/v0) = 0 for i = l , 2, 3. 
Then there exists an extension (V + g, g(1), c) of (F , g, c) w ^ 
? ( ^ o + g A ^ o + g ) C ^ o + g . -4ray too s^cfe extensions are isomorphic. 

PROOF. Let c be a fixed representative of c. We would like to find 
a 6 G g ® A 2 ( F * ) = H o m ( F A F , g) and an S G H o m ( g ® F , g) such 
that if we set 
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(7.4) Zl(u A v) = Z(u A v) + b(u A v), 

(7.5) Zl(X A v) = Xv + S(X <g> v), 

and 

(7.6) P(XAY) » [X, F] 

then Z1 defines a truncated Lie algebra structure on V+g. In other 
words we wish to be able to find a & 1 GHom((F+g)A(V+g) t g(1)) 
and an ^ G H o m ^ ^ ® (V+g), g™) so that 

(7.7) (c^ + db1 = 0 

and 

(7.8) Tc\wAz)-c\TwAz)-Z\w/\Tz)^S\T®w)z-S\T®z)w 

for all r £ g ( 1 ) , w and s G V+g. Now by the definition of g(1) we have 
dbl(wi/\w2f\w^)(E:g for any ze>i, w2, w3G V+g. Thus the F component 
of (c)2 must vanish by (7.7). If we apply this to Vi, v%y z^G F and com­
pare with (7.4) we see that 

(7.9) db + Z2 = 0. 

Such a b exists by assumption since (F , g, c) is a truncated Lie 
algebra. I t is determined up to a cycle. According to Lemma 7.1, 
Hl'*(g) = 0 so that b is determined by (7.9) up to the addition of a 
term dd for some ^ G H o m ( F , g(1))-

If we now look at the F component of (c1)2 applied to XGg, u and 
z>G F we see that S must satisfy 

(7.10) Xc(uAv)-c(XuAv)-c(uAXv)-S(X®u)v+S(X®v)u^O. 

Again such an 5 exists by assumption. I t is determined up to add­
ing a term r G Horn (g® F, g) where jTGHom(g, g(1))« Let us define 
d x G H o m ( F + g , g(1)) by setting 

d\v) = d(v), d\g) = T(g). 

Then we see that Zl is determined up to dd1 (where now 
d: H o m ( F + g , g ( 1 ) ) ->(F+g) ® A 2 ( (F+g)*)) . Thus if there exists a c1 

satisfying (7.4)-(7.8) it defines a unique truncated Lie algebra struc­
ture on V+g, given by (7.7) and (7.10). 

We now must check that (7.9) and (7.10) do indeed define a 
truncated Lie algebra structure, i.e., that there exist &1 and S1 so 
that (7.7) and (7.8) are satisfied. In view of Lemma 7.1 applied to 
V+g and g(1> and the fact that H2i(g)=0 (*=1, 2, 3) it suffices to 
prove that the g component of (Z1)2 is a cycle (as an element of 
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g®hz(V*)) and that the g component of c\ is a cycle in g®A2(F*), 
where c\(w/\z) = Tcl(w/\z) -cl(Tw/\z) -cl(wATz). These facts fol­
low from repeated application of (7.9) and (7.10) and will be left as 
straightforward (if rather tedious) verification for the reader. We 
have thus proved the existence part of the lemma. We have also seen 
that cl is uniquely determined by (7.4)-(7.6) once we have made a 
choice of Z. Suppose we have a second extension (V+g, ga\ cv) of 
( V, g, c) corresponding to a choice ê where 

6(u A v) — c(u A v) = S(u)v — S(v)u 

where S £ H o m ( F , g). Let <j>: V+g—>V+g be defined by 

<j>(u) = u + S(u) for « £ F , 

<t>(X) = X f o r l G g . 

Then <t> satisfies the hypothesis of Lemma 7.2 and <j)*cv satisfies (7.4)-
(7.6) for some representative cv of cl'. This proves that any two ex­
tensions are isomorphic, completing the proof of the lemma. 

I t should be remarked that the uniqueness part of the lemma de­
pends only on the vanishing of Hkl and Hk2 while we used Hkt~0 
for the existence part. 

We can now apply Lemma 7.3 again, replacing V by F + g , g by 
g(1) and c by c1. Repeated application of the lemma gives a truncated 
Lie algebra (V+g+ • • • +g ( n ) , g(w+1), cn+l) determined up to iso­
morphism. Passing to the limit we obtain an abstract transitive Lie 
algebra structure on L = \im(V+g+ga)+ • • • ) determined up to 
isomorphism. This proves Theorem II . 

8. We now turn to the proof of Theorem III . Let L be an abstract 
transitive Lie algebra and Lo a fundamental subalgebra. Let us set 
V=L/L°. We wish to find a realization of L as a transitive sub-
algebra of D(V) where Lo becomes the subalgebra of vector fields 
vanishing at the origin. I t will be convenient to prove the existence 
and the uniqueness of the realization simultaneously. We wish to find 
a mapping of L—>D(V) sending x->xGi) (F) where we shall write the 
Taylor series expansion of x as 

(8.1) x = x0 + xx+ • • • +Xi+ • • • 

so that XiCzV^S^V*). We shall determine the x,- inductively. By 
definition, we have 

(8.2) xo = x / L ° G F 

so that x0 is uniquely determined. We now wish to choose x i £ V® V* 
so that 
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(8.3) xiyo — yix0 = [x,y]0. 

Notice that for xÇLo, this defines xi uniquely since xo = 0. Let us 
choose a complement V to L° which we shall hold fixed throughout 
the following discussion. To define x% for all x £ L it suffices to define 
it for xGV. Equation (8.3) then says that we are given an element, 
c, of V®A2 (V*) (the Lie bracket on V regarded as a map of 
VAV-+V) and wish to find an element d of Hom(F, V®V*) 
= V® V*® V* with dd = c. This we can always do. The element â is 
determined up to cycle, i.e., an element of V®S2(V*). In other 
words, if L—>U sending x—>x' with 

(8.4) %' = xo + x x + • • • 

is a second realization of L on V we must have 

(8.5) x[ == xi + (x0, T̂ 2) 

where f 2 £7®S 2 (F*) and ( ) is the pairing of V®(V®S2(V*)) 
—>V® V*. If we consider a formal power series isomorphism \p2 given 
by 

^2 — id _}_. }p2 _}_ higher order terms 

then (8.5) says that yp\(x) = x' up through the term of first order. 
Now we shall proceed by induction. For any ^ G P ( F ) we shall 

denote by Wu the component of w of degree k (lying in V®Sk(V*)) 
while we shall denote by {w}jç the sum of terms of order up to k so 
that 

{w}k = WQ+ • • • + wk. 

LEMMA 8.1. Suppose that we have a map of L—^D(V) sending 
x-~>{x}k~xo+ • • • +Xk such that 

(8.6) {[*,?]}*-!« {[{*}*, {?}*]}*-!• 
We can then find a map L—>V®Sk+l(V*) given by x—>Xk+i so that 
{x} fc+i ~ {x} k+x*+i satisfies 

(8.7) { k y ] } * - {[{*}*+i, {y}*+i]|*. 

If x/c'+i is second such choice with \x'}k+i= {x}k+Xk+i then there is a 
formal power series map $h+l which is the identity up through terms of 
order k such that 

(In the left-hand side of (8.6) we should perhaps write {{[x, y ]} *} k-î 
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but we have used an obvious shorter notation; the same goes for 
(8.7).) 

It is clear that a repeated application of Lemma 8.1 and passage to 
the limit implies Theorem III. 

PROOF OF LEMMA 8.1. In view of (8.6), in order for (8.7) to hold 
we must merely check the terms of order k. We must therefore have 

(8.8) Xk+iyo —yjfc+ixo » — [{%}k, {y}k]k + [#, y]*. 

For x G L o this defines Xk+i uniquely as an element of 
Hom(F, F®S*(F*)) = V®Sk(V*)® V*. We must check that it ac­
tually lies in V®Sk+1(V*). 

For x and y in V the right-hand side of (8.8) can be regarded as an 
element of V®Sk(V*) ® F*A V*. We would like to verify that it is a 
cycle. 

Both of these verifications would follow if we know that 

(S 9) ^ * ' M*l**0+ My}*' {*}J**0+ H*U {*}*]*Fo 
= [*, y]kZo + [y, z]kx0 + [3, x]ky0. 

Let a denote complete anti-symmetrization with respect to x, y, z. 
Then by the Jacobi identity for D(V) we have 

so that in particular 

*([{*}*! {?}*], {*}d*-i) = 0. 
But 

(8.10) [{*}*, {y}*] ,{*}*]^ i=^ 

Now by induction we have 

{[{*}*, {y}*]}*~i = { [ « I J I I M 

so that 

[{[{*}*> {y}*]}*-i> {*}*]*-i = [[*, y], *l*-i - [[*, y]*, 20]. 

Substituting into (8.10), applying a and using the Jacobi identity 
on L we conclude (8.9). This proves the existence part of the lemma. 
The uniqueness follows just as in the case k = 0 since x&+i is deter­
mined up to a coboundary. We have thus proved Theorem III. 

Notice that for the case L° = 0 (so that L is an abstract finite dimen­
sional Lie algebra) Theorem III is just the formal analogue of the 
classical "third fundamental theorem" of the theory of Lie groups 
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which asserts that every Lie algebra is the Lie algebra of some Lie 
group. 

9. We will now attempt to present a brief discussion of the litera­
ture surrounding our subject. The fundamental papers on the subject 
are, of course, those of Lie [22] and Cartan [3]-[7] . For a different 
presentation of the foundations of the infinite groups (including the 
intransitive ones) see Kuranishi [18] and [19]. Kuranishi is perhaps 
closer, in spirit, to the ideas and language of Cartan and bases his 
presentation on the powerful Cartan-Kuranishi prolongation theo­
rem. His theory, like Cartan's is valid only in the analytic case. For 
a more "geometrical" presentation using the infinitesimal approach, 
cf. [27]. We now turn to more specific points: 

(a) Solving the partial differential equations. As we have emphasized 
several times the theory we have presented here is purely formal. 
There are two corresponding geometrical theories—where the data 
are always analytic or where the data are C00. I t is the analytic case 
that Cartan treats and uses as his main tool the existence theorem he 
developed for this purpose—the Cartan-Kâhler existence theorem 
(cf. [ l ] , [3] and [l7]). (Reference [ l ] provides an exposition of 
Cartan's papers [3 ] - [6 ], adhering rather closely to the original.) Actu­
ally, the methods we present here can be used in the analytic case. 
Such a treatment will be presented elsewhere. In the C00 case the 
situation is not yet in good shape on account of the lack of existence 
theorems like the one in [25] which are needed, cf. [27] and the 
comments at the end of §6, above. 

(b) Classification of the simple groups. Let us call an abstract transi­
tive algebra simple if it admits no closed ideal. The classification 
of the simple finite (dimensional) groups (in the real and complex) 
case is well known. In [5], Cartan purports to give a classification 
of the transitive simple infinite groups in the complex case. His 
main idea is to classify the "primitive" represented infinite "groups." 
(A primitive group is one which does not leave invariant a com­
pletely integrable differential system. In our formal model, the cor­
responding notion turns out to be a transitive closed algebra L C.D( V) 
with no proper subalgebras strictly containing L0.) Every simple 
group can be represented as a primitive group of transformations. 
In fact, let Z/° be a maximal subalgebra of finite codimension. Then 
V\Ln is a closed ideal and hence 01 /* = 0. By the analogue of a theo­
rem of Chevalley (p. 270 of [31 ]) we conclude that L'° is a funda­
mental subalgebra, so L/L'° gives a primitive representation. Car­
tan then proceeds to classify the primitive infinite groups. For this 
he first classifies (Chapter V of [5]) all (complex) irreducible Lie 
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algebras gC.V®V* for which g ( 2 ) ^0 . (He calls "semi-involutive" 
those g with g (AM0 for all k\ i.e., the g tha t we call of "infinite 
type.") He gives very few details of this classification. For more de­
tails cf. Chapter V of [27]. Both the procedures in [5] and in [27] 
are messy but the results seem to be correct. (For the extension of the 
classification to the real case cf. [24].) In Cartan's application of this 
classification to the classification of the primitive group there seems 
to be a serious gap (in the proof of Theorem II of §1), cf. the dis­
cussion in §2.11 of [27]. As a first step towards filling in this gap, cf. 
[ l6] . A classification of the irreducible infinite groups (i.e., those 
which don't have invariant any nontrivial differential system (integ­
r a t e or not)) is given in Chapter V of [27]. 

(c) The intransitive situation, geometry. There are two possible gen­
eralizations of our subject to the intransitive case—the study of in­
transitive geometries and the study of the intransitive groups. Most 
differential geometrical structures don't admit any nontrivial auto­
morphisms so that they can't be studied by studying their groups of 
automorphisms. Nevertheless the methods of the "general (geometri­
cal) equivalence problem" apply and, in fact, give all the crucial 
invariants. (The geometrical equivalence problem is not to be formu­
lated as we presented it here in §5. The presentation of §5 was arti­
ficial and just constructed so as to fit into our framework here.) The 
constant invariants of the transitive case (cf. §5) become functions in 
the general case; functions which are defined on suitable spaces asso­
ciated with the geometry. (For example, the only nonvanishing 
Spencer homology group for g = o(n) (the orthogonal algebra) is H21. 
An element of Hn corresponds to the "curvature." In general the 
curvature of a Riemann manifold is a function.) For a treatment of 
the general equivalence problem, cf. [2], [ó], [9], [ l2] , [lS], [20], 
[27, Chapter I I ] and [29, Chapter VI I ] . In [15] many of the 
"tensors" of classical differential geometries (such as conformai 
differential geometry, projective differential geometry, etc.) are shown 
to be the appropriate specialization of the "structure functions" of 
the general equivalence problem. 

(d) The intransitive situation, algebra. The intransitive "groups" 
were studied by Cartan along with the transitive ones, cf. [3] and [4] 
and Kuranishi's presentation [19]. The paper [4] is of fundamental 
importance. We hope to present a formal version of the intransitive 
groups, generalizing the methods of this paper, in the near future. The 
study of the intransitive groups may be of importance in physics. 
The various "gauge groups" [30 ] are examples of intransitive infinite 
groups. 
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APPENDIX 4 

Let g be a subspace of Hom(F, W). The prolongations of g, g(1), 
g(2) etc. will be defined as above. Let H be a subspace of V. We will 
denote by gH the subspace of g consisting of all mappings which are 
identically zero on H. Let p* be the minimum of dim gu where H runs 
through the set of ^-dimensional subspaces of V. 

One can easily establish the following result (cf. [23] or [27]) 

(1.1) dim g(1) g po + PI + • • • p*~i. 

If there is equality in (1.1) then the space g is called involutive. 
A simple criterion for involutiveness is the following: 
There exists a basis t\> • • • , tn for V, such that if Hi is the space 

spanned by h, • • • , tn then the mapping 

X(*#+i) (gHt)
(1) - > gn, , J - > su+l9 

is surjective. 
To prove the equivalesce one way is easy. We simply note that 

the kernel of A(J»+i) is (gHi+1)
(1), and therefore dim(g#.)(1) = dim g#< 

+ d i m (gHi+l)
a) so by induction: dim g(1) = dim g+d im g# x+ • • • 

+ d i m gHn-v The converse is a little more difficult, and we will not 
bother to prove it here, citing [27] as a reference. 

A basis for V satisfying the conditions above will be called quasi-
regular. In [25] or [27] it is proved that 

If hy • • • , tn is quasi-regular for g it is also quasi-regular for 
gd) (g(D regarded as a subspace of Hom(F, g)). 

In particular if g is involutive g(1) is involutive. 
Let Ek be the vector space dual to gC*-1*. By convention we will set 

E ° = V. If t is an element of V it gives a mapping g(Jfe)—>g(fc~1), sending 
s—>s*, and therefore a dual mapping £*—»J5*+1. If 5 is an element of 
£* we will denote its image by ts. 

By the definition of g(fc), h(hs) ~ t2(hs) for 5 in £fc and h, t2 in F. 
Therefore the mapping V®Ek—Œh+X we have just defined extends 
to a mapping of S(V)®^Ek into ^,Ek. This defines an S(V)-
module structure on ^Ek. Moreover E = ]T}E* is a homomorphic im­
age of the *S(F)-module W*®S(V); therefore it is Noetherian. 
Furthermore the Spencer homology defined above dualizes to the 
Koszul homology of E. 

Let h, • • • , tk be a set of linearly independent elements in F and H 
the vector space they span The annihilator of g§5 in Ek+l is 
(/i, • • • , tk)E

k\ so the dual of gf is identical with Ek+l/(tu • • • ,fe).E*. 
4 Added in proof. 
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Assume now that g is involutive. The definition of involutiveness 
translated into its dual form says: There exists a basis, h, • • • , tn, 
of V such tha t 

fc+i(JSV(*i, • • • , '*)£*-') -+ Ek+1/(h, • • , tk)E» 
is 1-1. 

In other words, letting E+ denote the sum X)*>o E, g is involutive 
if and only if there exists a sequence h, • • • , tn in F such that no 
nonzero elements of E+/(h, • • • , fe)E is annihilated by /*+i. 

The following letter from Serre (reproduced with his kind permis­
sion) clears up the relation between the vanishing of the Hhi(g) 
(used for k = 1, 2, 3 above) and involutiveness (used by Cartan). 

Paris, 17 Juillet 1963 

Votre traduction, en termes de modules, de la notion d'algèbre 
involutive est tout à fait satisfaisante. Il est bien vrai en tout cas 
que "involutiP équivaut à dire que certains groupes d'homologie 
sont nuls, comme vous le conjectures. La démonstration consiste à 
reprendre celle du cas local, en faisant attention aux degrés (le cas 
local est traité dans Auslander-Buchsbaum, ainsi que dans mon papier 
au symposium Tokyo-Nikko—cf. notamment §3 de ce papier). 

Voici un peu plus de détails: 
Soit S = k[Xi> • • • , Xn] l'algèbre de polynômes sur un corps k 

(supposé infini, mais pas nécessairement de caractéristique zéro). On 
note 7 l'idéal maximal (Xi, • • • , Xn); S/I — k. On considère des 5-
modules gradués de type fini £ = X^o-E*, les degrés k prenant des 
valeurs ^ 0. On note E+ la somme directe des Eh pour k â 1 ; lorsque 
E est engendré par ses éléments de degré zéro (c'est le cas pour le 
module que vous étudiez), on a E+ = IE. 

Si E est un tel module, on définit comme vous savez le complexe 
de l'algèbre extérieure K(X, E) associé à £ et à la suite des X». La grad­
uation de E définit une graduation de K(X, E). Les groupes d'homo­
logie correspondants sont notés Hi(E); eux aussi sont gradués à 
degrés ^ 0 , ce qui donne un sens à l'expression Hi(E)+. Noter que 
Hn(E) s'identifie au sous-espace vectoriel de E formé des éléments 
annulés par 7. 

LEMME 1. Soit E=*%2kzoEk comme ci-dessus. Les conditions sui­
vantes sont équivalentes: 

(a) iJn(£)+ = 0. 
(b) l x = 0, x(EE entraîne xE.E°. 
(c) Il existe une combinaison linéaire t des Xi telle que /# = 0, x<E.E 

entraîne x(EE°. 
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(d) Pour toute combinaison linéaire t des Xi n'appartenant pas à un 
nombre fini de sous-espaces vectoriels, la condition tx = 0, xÇ.E entraîne 
xGE°. 

(Au lieu de d), je dirai comme vous "pour tout / générique • • • .") 
(a)<=>(b) est trivial. Idem pour (d)=>(c)=>(b). Reste à voir que 

(b)=Kd). Soit H le sous-espace de E formé des éléments x tels que 
lx = 0. On a HQE0; soit K un supplémentaire de H dans £° , et 
posons F=K@El@E2@ • • • . On a E = H®F. Il résulte de (b) 
qu'aucun élément non nul de F n'est annulé par I. Il en résulte que I 
n'est pas un ideal premier associé à F (au sens de Bourbaki, AIg. 
Comm.y Chap. IV, §1); soient pu * • * , pr les dits idéaux premiers 
associés. Si l'on choisit t (Jï^iVJ • • • \Jpu on sait que t est non divi­
seur de zéro dans F, ce qui démontre (d). 

LEMME 2. Soient E et t vérifiant les conditions de (c) ci-dessus. Pour 
tout it on a une suite exacte: 

0 -> Hi(E)+ -> Hi(E/tE)+ -> ff«-i(£)+ -> 0. 

On écrit comme ci-dessus E = H®F. On remarque que Hi{E)+ 
= Hi(H)+®Hi(F)+ = Hi(F)+1 et de même Hi(E/tE)+ = Hi(F/tF)+. 
On peut donc remplacer E par F sans rien changer; cela revient à 
supposer que H=Q. La multiplication par / est alors injective; en 
effet, si tx = 0, x £ E , on a tXiX = 0 pour tout i, d'où X^x = 0 pour tout i 
(d'après (c)), i.e. 7x = 0, et x = 0. On en déduit une suite exacte: 

t 
0 ~> E -» E -> E/tE -> 0, 

d'où une suite exacte d'homologie: 

Hi(E) -+ Hi(E) -> Hi(E/tE) -> • • • . 

Mais une propriété élémentaire des Hi montre que / annule les Hi. La 
grande suite exacte précédente se coupe donc en petits morceaux de 
la forme: 

0 -» Hi(E) -> Hi{E/tE) -> £T«_i(£) -» 0. 

Commes les homomorphismes Hi(E)-±Hi(E/tE) et Hi(E/tE)-> • • • 
conservent les degrés, on peut partout remplacer Hi par H*, d'où le 
lemme. 

THÉORÈME. Soient (tit • • • , tm) m combinaisons linéaires des co­
ordonnées Xi. On suppose que pour tout i, 1 rg i^ra , le couple formé de 
Ei-\~E/(tx, • • • , £*_i)J3 et de U vérifie la condition (c). On a alors: 
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Hi(E)+ = 0 pour i > n — m, 

Hn^n(E)+ = £rn^+ 1(E!)+ = • • • = Hn(Em)+. 

[L'hypothèse signifie que les relations tiX = Of xGE/(tu • • • , ti-i)E 
entraînent deg(x) =0 . ] 

On raisonne par récurrence sur m, le cas m = 0 étant évident (et le 
cas m = 1 étant conséquence facile des Lemmes 1 et 2). L'hypothèse de 
récurrence montre que Hi(E)+ = 0 pour i > n — m+1, et que Hn-m+i(E)+ 

est isomorphe à Hn(Em-i)+. Le Lemme 1, appliqué à JEW-I et tmt 

montre que £Tn(Em_i)+==0. D'où irn_w+i(E)+==0. Reste à démontrer 
la dernière ligne, autrement dit que 

Hn-m+itEi)* = Hn~m+i+l(Ei+i)+. 

Cela résulte simplement du Lemme 2, compte tenu de ce que 
Hn-m+i+i(Ei)+ = 0 grâce à l'hypothèse de récurrence. 

Disons, pour simplifier, qu'une suite (/1, • • • , /»») vérifiant les con­
ditions du théorème est une suite quasi-régulière pour E. 

COROLLAIRE. Pour que Von puisse prolonger la suite quasi-régulière 
(tu • • • , tm) en une suite quasi-régulière (tu • • • , /m+i), il faut et il 
suffit que Von ait £Tn-.m(E)+ = 0. 

Cela résulte du Lemme 1, appliqué au module Em = E/(tu • • • ,tm)E. 
On en arrive enfin aux modules "involutifs," donnés par le théorème 

suivant: 

THÉORÈME. (1) Si E possède une suite quasi-régulière (tu • • • , tn) 
de longueur n, on a Hi(E)+~0 pour tout i>0. 

(2) Inversement^ si Hi(E)+ = 0 pour tout i ê 1, toute suite (tu • • • , tn) 
"générique" est quasi-régulière pour E, 

C'est immédiat en appliquant le théorème et son corollaire. 
REMARQUE. Si E est engendré par ses éléments de degré zéro (ce 

qui est le cas chez vous), on a en plus HQ(E)+ = 0; c'est bien plus joli 
(ce sont ces modules qu'on devra appeler "involutifs"). 

Du point de vue pratique, il serait commode de définir les involutifs 
par la condition homologique fl"»(£)+ = 0 pour tout i. Noter que, si 
E est un module quiconque, et si l'on tronque E à l'ordre k en posant: 
TrkE — Ek(BEk+l@ • • • (avec décalage des degrés de k) le module 
TrkE est involutif pour k asezg rand. Cela résulte simplement du fait 
que les Hi(E) sont des espaces vectoriels de dimension finie. 

Autre définition des modules involutifs: ce sont ceux qui possèdent 
une résolution minimale de la forme: 0—>Ln—» • • • —»L<r-»-E—>0, où 
Lt est un module libre gradué dont les générateurs sont homogènes 
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de degré i. En d'autres termes, E est engendré par des éléments de 
degré 0, les relations entre ces générateurs sont engendrées par des 
éléments de degré 1, les relations entre relations par des éléments de 
degré 2, etc. C'est une curiosité. 

Bien à vous. J.-P. Serre 
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