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1. Introduction. As far as the existence of the smallest congruence 
of a given type on a semigroup is concerned, Kimura, Yamada and 
the author discussed special cases of semigroups in [7; 11 ] and iden­
tity conditions in [8]; the author argued implication conditions in 
[9]; Kimura generalized them to algebraic systems [4]. Also, Clif­
ford and Preston interpreted these results of the principle of the 
maximal homomorphic image in [3]. Although the proof of existence 
was easily obtained, the problem of constructing the smallest con­
gruence in the general case still remains. In this paper we define types 
of relations by means of semi-closure operations and discuss the exist­
ence of the smallest relation of a given type. In particular, if we pro­
vide semi-closure operations with the condition "join conservative," 
then we can explicitly state the method of construction of the smallest 
relation of a given type. This paper is a simplification, resystematiza-
tion, and generalization of the theory in [9]. 

2. General theory of operations on relations. Let £ be a set. A 
binary relation p is a subset of the product set EXE. Let (B be a 
complete lattice composed of binary relations with respect to the 
usual inclusion relation C. For an arbitrary subset Ct= {p«; a EI1} 
of (B, the join and meet are denoted by 

U pa or / ( a ) and (1 pa or M(Q) 
«er aev 

respectively. (B is not required to be the collection of all binary rela­
tions. Consider a unary operation P, i.e., a mapping of (B into itself: 
p-*pP. The inclusion relation with respect to the operations is defined 
as follows: 

(2.1) Q includes P, i.e., P ^ Q means pP C PQ for all p £ ( B , 

and hence P = Q iff pP=pQ for all pE(B. Accordingly, the join and 
meet, U$ P$, fis Pb of a set {P$; ££E} are given as follows: 

(2.2) P ( U ? { ) = U { pPh p ( n p f ) = n { pPs. 

1 This paper is a rapid report without proof. The proofs will appear in [lO]. 
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An operation which maps all relations to the empty relation is called 
the empty operation. A multiplication of operations P and Q is 
defined by 

(2.3) PQ: p(PQ) - (PP)Q. 

Following [l ; 5] we define the following conditions concerning opera­
tions P : 

(2.4.1) Isotone: pCcr implies pPC<rP. 
(2.4.2) Extensive: pQpP for all pG(B. 
(2.4.3) Idempoten t :P 2 = P . 
An isotone extensive operation is called a semi-closure operation, 

and an idempotent semi-closure operation is called a closure opera­
tion. The set of all semi-closure operations on (B is denoted by % 

LEMMA 2.1. ^ is a complete lattice with respect to (2.1) or (2.2), and 
at the same time <$ is a partially ordered semigroup with respect to (2.3) 
and (2.1), that is, (2.1) is compatible with respect to (2.3). 

As usual, if pP=p, then p is called P-closed. 
For any subset of $ , say, {P$; £ G E } , 

A P$ means "A relation p is P$-closed, for all £ G 2." 

V P$ means "A relation p is P$-closed, for at least one £ G 3*" 

If p satisfies Aï Pf» | S | «ë l,2 then p is said to be of meet-type A* P$î 
if p satisfies V| P$, | S | > 1, then p is said to be of join-type V$ P$. By 
"type" we mean either a join-type or a meet-type. Clearly p is of type 
A* P^ iff p is U$ P$-closed. The smallest relation of type T including p 
is called the relation of type T generated by p. 

THEOREM 2.1 (EXISTENCE THEOREM FOR MEET-TYPES). Let p be any 

relation belonging to (B, and {P$; £ G 2 } be a fixed system of semi-closure 
operations on (B. There exists the relation <rG(B of meet-type l\$ P$ gener­
ated by p. 

In the same way, semi-closure operations can be defined in any 
complete lattice. By Lemma 2.1, ^ is a complete lattice, and the 
mapping P—+PQ, for a fixed Ç, is a semi-closure operation on $ . If 
PQ = P, P is said to be Ç-closed. _ 

For a subset {P$; £GH} of $ , there is a closure operation P such 
that P is the smallest P^-closed semi-closure operation, for all £GH, 
which includes all P$. As in the case of relations, P is called the closure 

2 | S | is the cardinal of the set & 
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operation generated by the set {P$; £ G E } . ? is given in the following 
way: 

(2.5) pP « Jf((Bp) where (Bp = {<r G <B; a 3 P, <rP* = a for all J G E ) , 

We denote P by P = fP*; £GEljJf | E | = 1 , T = {P}. Accordingly, a 
in Theorem 2.1 is given by a = pP. Immediately we have 

(2.6) P = fP*; £ G S] = I U P * | = | U P * | where P* = {PJ . 

THEOREM 2.2 (EXISTENCE THEOREM FOR JOIN-TYPES). The relation 
a of a given join-type V^n P$, | S | > 1, generated by p exists iff pP' is of 
type V* P$ where P' = fis P*, P$ = fP«l. /ƒ # exists, a = pP'. 

To obtain theorems concerning existence of the smallest relation 
of given type, not restricted to relations including a given relation, 
we may replace p in Theorems 2.1, 2.2 by the smallest relation t in (£. 

If we assume "join-conservative" condition on operations, then P 
can be expressed in explicit form. 

A subset ft of (B is called an upper half-subsemilattice if for any p, 
<r£ Ct, there is r G Ct such that pVJcrCr. An operation P is called join-
conservative if, for any upper half-subsemilattice (& of (B, 

(2.7) [/(Ct)]P C /(ctP) where a P = { p P ; P G a } . 

LEMMA 2.2. If each P$ is join-conservative, U$ P$ is join-conservative. 
The set of all isotone, join-conservative operations on (B is a semigroup 
with respect to the multiplication (2.3). 

If P is a join-conservative semi-closure operation, (2.7) is equivalent to 

(2.70 [J(&)]P = /(CfcP). 

THEOREM 2.3. Z ^ {P$; £GE} 5e a set of join-conservative semi-
closure operations. Then 

(2.8) fP, ; £ G El = U P £ • • • P £ & G S, 

w^ere w* is a positive integer, P|J • • • PJ* is a multiplication in the 
sense of (2.3), and the union runs through all £i, • • • , £*; Wi, • • • , w&; 
jfe = l, 2, • • • . 

THEOREM 2.4. Le/ { P , ; i = l , 2 , • • • ,n} be a set of a finite number of 
join-conservative closure operations. If PiPj = PiPjPifor all i, j , ip^j, 
then 

(2.9) {Pu i - 1, 2, • • • , n] = P1P2 • • • P« = P * • • • Pi, 
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iu • * • » in being any permutation of 1, • • • , n. 

3. Implications. By a function ƒ on a set E we mean a mapping 
which associates with each ordered system (#i, • • • , xn) of elements 
of E a single element ƒ (#i, • • • , #n ;#i, • • • , #m) of E where ax, • • • , am 

are constant elements of £ . Consider the following conditions on a 
relation p. 

For fixed functions ƒ$, g$, A and k (££E) , 

/K*i> • • • > * » ; 0*i> • • • > 0e»$)p&(*i> • ' • > * » ; <%> • • * > ^ p » { 6 2 , 

(3.1) implies h(x1} • • • , #n; Ji, • • • , bi)pk(xh • • • , a»; 6i, • • • , Ji). 

This means that if there are elements of E satisfying 
ƒ#>& f ° r a ^ ££H, then &p& holds for those A condition of 
this form is called an implication. A semi-closure operation P cor­
responds to an implication as follows: 

(3.2) PP = P\JT 

where r is the set of all (h(xi, • • • , #»; 6i, • • • , b{), k(xi, • • • , xn\ 
bu • • • , &i))> 0*i> * * • » %n) running through all the systems satisfying 
fzpgi for all £ £ E , if they exist. We can verify that P is join-conserva­
tive, and p satisfies the condition (3.1) iff p is P-closed or of type P. 
The following condition is called the identity or the identity condition. 

h(xu • • • , xn; bi, • • • , bi)pk(xi, • • • , xn\ bh • • • , bj) 

for all #i, • • • , # » £ JE. 

Identities are special cases of implications. Also, a system of implica­
tions gives us a join-conservative meet-type. We remark that Theo­
rem 2.4 is available for identities. 

EXAMPLES : 

(3.4) Reflexive: xpx. 
(3.5) Symmetric: xpy=$ypx. 
(3.6) Transitive: xpyf ypz=$xpz. 
(3.7) Left compatible in a groupoid: xpy=>zxpzy. 
(3.8) Let p be a congruence. The condition that G/p is a commuta­

tive semigroup: (xy)zpx(yz)t uvpvu, stpts. 
(3.9) G/p is cancellative : xzpyz=$xpy> wupwv=$upv. 
(3.10) G/p is weakly reductive [3] : The system of xa&yat, a^xpa^yt 

for all a$£G, implies xp^. 
The theorems in the preceding section are applied in various ways. 

For example: 
(3.11) Let p be a relation on an algebraic system [6]. The smallest 
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congruence of a given meet-type including p exists. We assume here 
that an algebraic system has a finite number of binary operations. 

(3.12) The smallest equivalence by which an algebraic system is 
the union of disjoint sub-algebraic-systems exists. 

(3.13) In a groupoid ([2] or [3]), the smallest congruence, includ­
ing a given relation and having the property that the factor groupoid 
is a partially ordered groupoid, exists. 

REMARK. Let p be a congruence on a groupoid. The condition 
"G/p contains a right identity" is not a meet-type but a join-type, 
while the condition "the homomorphic image of a given element a 
of G is a right identity" is an identity condition. If G is finite, the 
condition "G/p is a group" is a system of identities. 

4. Equivalences and congruences. Let p be any relation on a set 
E and © the set of all relations on E. Define F and S as follows : 

(4.1) F: pF = pyJi where t is the equality relation. 
(4.2) S :pS = p U p ( - l ) where p ( - 1 ) = {(*, y); (y, x)Ep}. 
Both F and S are join-conservative closure operations. In the usual 

way (for example, [3]), we define a binary operation • in ©. If p, 
<r£©, 

(4.3) p-<r= {(a, &); (a, x )Ep , (x, &)£<r for some # £ £ } where, if 
this set is empty, define p-<r={^}, empty relation. Now denote 

(4.4) r 2 : p r 2 = P U p 2 . 
T* is a join-conservative semi-closure operation and hence the join-
conservative closure operation T generated by Ti is given by Theorem 
2.3. 

(4.5) r = I r 2 l = Ur.i T\\ therefore, p r « U f - i p'. 
The equivalence generated by a relation p is given by applying the 
following join-conservative closure operation to p. 

(4.6) 0 = 1^, 5 , JT|, Q is called the equivalence operation. 
Namely, pQ is the equivalence generated by p, and a is an equivalence 
iff <7 = 0-0. 

We have the following properties: 
(4.7) F2 = F,S2 = Sf r 2 = T; 
(4.8) FS^SF; 
(4.9) FT=TF; 
(4.10) STS=TST~ST. 

Let O be the subsemîgroup of $ (cf. Lemma 2.1) generated by 
F, 5, T. I t is interesting tha t O is always finite. For this purpose we 
can show the free semigroup O * generated by F, 5, T with the above 
relation is finite. 

Thus we have: 
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THEOREM 4,1. The free semigroup 0 * generated by F, S, T with the 
product relations (4.7) through (4.10) is a partially ordered semigroup 
composed of nine elements: F, S, T, ST, TS, FT, FS, FST, FTS, 
with the following partial ordering diagram: 

THEOREM 4.2. Q = FST, that is, the equivalence generated by p is 
p(FST) (cf. [3]). 

REMARK (1). Clearly Q = FST=FTST, etc. But FST, SFT, STF 
are the expressions for Q of the smallest length. 

Let X* be the subsemigroup of 0 * generated by 5 and 7\ Then 

(4.11) D * = £ * U { i ? } U FZ* 

where 0 * is the union of the three disjoint subsernigroups. Every 
element of FX* is uniquely expressed by the product of F and an 
element of SE*, and F commutes with every element of SE*. Generally 
let A and B be arbitrary groupoids, and A1 and B1 be the groupoids 
obtained by adjoining the identity 1. Even if A or B contains the 
identity already, such a procedure is valid. The direct product AXXBX 

from which the identity of AlXB1 is excluded is called the annexed 
product of A and B. Then we can say that 0 * is the annexed product 
of {F} and SE*. 

REMARK (2). If E has a cardinal à 3 , then 0 = 0 * . 
Let G be a groupoid in the sense of [2] or [3], and let p be any rela­

tion in G. Operations Cr, Ci and C are defined in the following way. 

Cr and Ci 

(4.12) pCr = p U {(ax, bx);xG G, (a, b)Ep}, 

pCi = p\J {(xa, xb); # E G, (a, b) £ p}. 

Cr and Ci are join-conservative semi-closure operations. C is defined 
to be the closure operation generated by Cr and Ci. Then we have 

C — fCr, Cil ~ U Cil ' ' ' C*k (where ij is either r or /) 

= {CR, CJ where CR = fCr]|, CL = {C,J. 
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In particular, if G is a semigroup, then 
(4.14) C2

r=Cr, (% = Ch CrCi^CiCr and hence C = CrCh 

Now we find the form of the operation determining the congruence 
generated by a relation. Define 

(4.15) N = 1[F, S, C, r j , N is called the congruence operation. 
We have the following product-relations: 
(4.16) FCr^CrF, FCi^CiF, and hence FC=CF\ 
(4.17) SCr=CrS, SCi^dS, and hence SC=CS; 
(4.18) CRTCR = TCRT=CRT, CLTCL = TCLT~CLT, and hence 

crc=rcr==CT. 
Let 91 be the subsemigroup of $ generated by F, 5, C, T. Then 91 

is also finite. 
THEOREM 4.3. The free semigroup 9i* generated by S, F, C, T with 

the product relations, (4.7) through (4.10), and the last equalities in 
(4.-16) through (4.18), is the annexed product of {F} and U* where U* 
is a subsemigroup generated by S, C, T and consists of twelve elements: 

5, c, r, sc, ST, rs, CT, TC, STC, SCT, CTS, TCS. 

9Î* is a partially ordered semigroup with twenty-five elements in which 
FSCT is greatest. 

The diagram ofU* is 

TS SC TC 

S T C 

THEOREM 4.4. p(FSCT) is the congruence generated by p, that is, 
N=FSCT,(cf. [3]). 

REMARK (1). A finite semigroup in which 91 = 91* exists. 
REMARK (2). If G is a semigroup, the free semigroup generated 

by F, S, Cr, Ci, T, consists of sixty-nine elements. 
Finally, we show how to construct a congruence of a given meet-

type. 

THEOREM 4.5. Let P be a join-conservative semi-closure operation. The 
congruence a of meet-type P generated by p is given by 
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a = pw where W = U (PN)\ 

In particular, if P is a closure operation derived from an identity, then 
W=PN. 

REMARK (3). Kimura introduced in [4] a normal property on an 
algebraic system. A congruence p is of meet-type iff G/p satisfies a 
normal property. 

We want to add the following fact to the introduction of this paper: 
Recently Petrich dealt with the greatest semilattice decomposition 

of a semigroup in Bull. Amer. Math. Soc. 69 (1963), 342-344, inde­
pendently of [9]. 
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