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1. Introduction. As far as the existence of the smallest congruence
of a given type on a semigroup is concerned, Kimura, Yamada and
the author discussed special cases of semigroups in [7; 11] and iden-
tity conditions in [8]; the author argued implication conditions in
[9]; Kimura generalized them to algebraic systems [4]. Also, Clif-
ford and Preston interpreted these results of the principle of the
maximal homomorphic image in [3]. Although the proof of existence
was easily obtained, the problem of constructing the smallest con-
gruence in the general case still remains. In this paper we define types
of relations by means of semi-closure operations and discuss the exist-
ence of the smallest relation of a given type. In particular, if we pro-
vide semi-closure operations with the condition “join conservative,”
then we can explicitly state the method of construction of the smallest
relation of a given type. This paper is a simplification, resystematiza-
tion, and generalization of the theory in [9].

2. General theory of operations on relations. Let E be a set. A
binary relation p is a subset of the product set EXE. Let ® be a
complete lattice composed of binary relations with respect to the
usual inclusion relation C. For an arbitrary subset @ = {pa; aEI‘}
of ®, the join and meet are denoted by

Upe or J(@ and N p, or M(Q)

a€l a€T
respectively. ® is not required to be the collection of all binary rela-
tions. Consider a unary operation P, i.e., a mapping of ® into itself:
p—pP. The inclusion relation with respect to the operations is defined
as follows:

(2.1) Q includes P, i.e., P =< Q means pP C pQ forall p € @®,

and hence P=Q iff pP=pQ for all p&®. Accordingly, the join and
meet, Ug Pg, N; P, of a set {Py; EEE} are given as follows:

(2.2) p( U Pe) = U pPy, p( f;] Pe) = M pPy.
¢

1 This paper is a rapid report without proof. The proofs will appear in [10].
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An operation which maps all relations to the empty relation is called
the empty operation. A multiplication of operations P and Q is
defined by

(23) PQ: p(PQ) = (oP)Q.

Following [1; 5] we define the following conditions concerning opera-
tions P:

(2.4.1) Isotone: pCo implies pPCoP.

(2.4.2) Extensive: pCpP for all pE®.

(2.4.3) Idempotent: P?=P.

An isotone extensive operation is called a semi-closure operation,
and an idempotent semi-closure operation is called a closure opera-
tion. The set of all semi-closure operations on ® is denoted by P.

LeEmMA 2.1. B is a complete lattice with respect to (2.1) or (2.2), and
at the same time B is a partially ordered semigroup with respect to (2.3)
and (2.1), that is, (2.1) is compatible with respect to (2.3).

As usual, if pP =p, then p is called P-closed.
For any subset of P, say, {P;; £€E},

A\ P: means “A relation p is Pg-closed, forall ¢ € E.”
¢

V P; means “A relation p is P;-closed, for at least one ¢ € E.”
¢

If p satisfies A\: Py, IE[ =1,2 then p is said to be of meet-type A Pg;
if p satisfies V¢ P¢, | E| >1, then p is said to be of join-type Vi P. By
“type” we mean either a join-type or a meet-type. Clearly p is of type
A¢ P: iff p is U Pg-closed. The smallest relation of type T including p
is called the relation of type T generated by p.

THEOREM 2.1 (EXISTENCE THEOREM FOR MEET-TYPES). Let p be any
relation belonging to B, and {Pg; EEE} be a fixed system of semi-closure
operations on ®. There exists the relation ¢ © ® of meet-type Ny Py gener-
ated by p.

In the same way, semi-closure operations can be defined in any
complete lattice. By Lemma 2.1, P is a complete lattice, and the
mapping P—PQ, for a fixed Q, is a semi-closure operation on P. If
PQ=P, P is said to be Q-closed.

For a subset {Pg; EEE} of P, there is a closure operation P such
that P is the smallest P;-closed semi-closure operation, for all {E€E,
which includes all P;. As in the case of relations, P is called the closure

2| | is the cardinal of the set Z.
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operation generated by the set {Pg; ¢€E}. Pisgiven in the following
way':

(2.5) pP = M(®,) where ®, = {oc € ®; ¢ 2 p, oP; = o forall ¢ € E}.

We denote P by P={P;; EE:]} if |E| =1, P={P]}. Accordingly, ¢
in Theorem 2.1 is given by ¢ =pP. Immediately we have

(M)P=Mﬁ€ﬂ=[%hﬂ=ﬂ%ﬁﬂwMeE=U&

THEOREM 2.2 (EXISTENCE THEOREM FOR JOIN-TYPES). The relation
o of a given join-type Vge~ Py, [,.,[ > 1, generated by p exists iff pP’ is of
type V¢ Py where P' =(\; Py, Pg—{[Pg:[} If it exists, o =pP’.

To obtain theorems concerning existence of the smallest relation
of given type, not restricted to relations including a given relation,
we may replace p in Theorems 2.1, 2.2 by the smallest relation ¢ in ®.

If we assume “join-conservative” condition on operations, then P
can be expressed in explicit form.

A subset @ of ® is called an upper half-subsemilattice if for any p,
0 E @, there is 7€ @ such that p\Je C7. An operation P is called join-
conservative if, for any upper half-subsemilattice @ of ®,

2.7 [J(@)]P S J(@P) where QP = {pP;p € G}.

LeEMMA 2.2. If each P is join-conservative, Uy Py is join-conservative.
The set of all isotone, join-conservative operations on ® is a semigroup
with respect to the multiplication (2.3).

If P is a join-conservative semi-closure operation, (2.7) is equivalent to

2.7 [7(®)]P = J(aP).

THEOREM 2.3. Let {Py; §€E} be a set of join-conservative semi-
closure operations. Then

(2.8) [Pst€El=U Pyy--- Py, &EE,
tn

where n; is a positive integer, PP - - - Pg is a multiplication in the
sense of (2.3), and the union runs through all &, + « - , Ex; 1, * « -, M3
E=1,2,- -

THEOREM 2.4. Let { Pi;i=1,2, - - - ,n} bea set of a finite number of
join-conservative closure operations. If P;P;=P;P;P; for all 1, j, i#],
then

(29) [Py;i=1,2-+,n]=PPy---Py=Py--- Py,
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11, * * *, Ia being any permutation of 1, - + - , n.

3. Implications. By a function f on a set £ we mean a mapping
which associates with each ordered system (xi, * - -, x,) of elements
of E asingle element f(x1, * * * ,%s; @1, * * *,0Gn) of Ewhereay, * * *,0n
are constant elements of E. Consider the following conditions on a
relation p.

For fixed functions f;, g, % and k (¢EE),

fe(@, « -+ nj a1, ++ -, atmg)l’gi(xly oty ¥ny Gyttt aintg): HSR

(3.1) implies k(x1, « « +, %n3 by, « ¢+, bi)pk(or, » ¢y 205 b1,y - ¢+, b))

This means that if there are elements xi, * + +, x, of E satisfying
fepge for all §EE, then hpk holds for those x1, « * + , %,. A condition of
this form is called an implication. A semi-closure operation P cor-
responds to an implication as follows:

3.2) pP=p\Ur7

where 7 is the set of all (h(xy, -« +, %n; b1, « + +, b0), R(x1, » + +, %a3
by, + ¢+ +,b1), (%1, + + +, %,) running through all the systems satisfying
fiog: for all £EF, if they exist. We can verify that P is join-conserva-
tive, and p satisfies the condition (3.1) iff p is P-closed or of type P.
The following condition is called theidentity or the identity condition.

h(xl) RIS JHCI ’bl)Pk(xls Ce oy Xay byt ;bl)

3.3
3:3) forall %y, - - -, 2, € E.

Identities are special cases of implications. Also, a system of implica-
tions gives us a join-conservative meet-type. We remark that Theo-
rem 2.4 is available for identities.

ExXAMPLES:

(3.4) Reflexive: xpx.

(3.5) Symmetric: xpy=>ypx.

(3.6) Transitive: xpy, ypz=>xp2.

(3.7) Left compatible in a groupoid: xpy=>2xp2y.

(3.8) Let p be a congruence. The condition that G/p is a commuta-
tive semigroup: (xy)zox(yz), uvovu, stpts.

(3.9) G/p is cancellative: xzpyz=xpy, WupwWr=>upy.

(3.10) G/p is weakly reductive [3]: The system of xaspyaz, agxpacy,
for all a;EG, implies xpy.

The theorems in the preceding section are applied in various ways.
For example:

(3.11) Let p be a relation on an algebraic system [6]. The smallest
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congruence of a given meet-type including p exists. We assume here
that an algebraic system has a finite number of binary operations.

(3.12) The smallest equivalence by which an algebraic system is
the union of disjoint sub-algebraic-systems exists.

(3.13) In a groupoid ([2] or [3]), the smallest congruence, includ-
ing a given relation and having the property that the factor groupoid
is a partially ordered groupoid, exists.

REMARK. Let p be a congruence on a groupoid. The condition
“G/p contains a right identity” is not a meet-type but a join-type,
while the condition “the homomorphic image of a given element @
of G is a right identity” is an identity condition. If G is finite, the
condition “G/p is a group” is a system of identities.

4. Equivalences and congruences. Let p be any relation on a set
E and & the set of all relations on E. Define F and S as follows:

(4.1) F:pF=p\Ui where i is the equality relation.

(4.2) S:pS=pUp(—1) where p(—1)={(x, 9); (3, x) Ep}.

Both F and S are join-conservative closure operations. In the usual
way (for example, [3]), we define a binary operation - in &. If p,
TEGQ,

4.3) p-o={(a, b); (a, x)Ep, (x, b)E0 for some xEE} where, if
this set is empty, define p-o=[], empty relation. Now denote
p*=p-p.

(4.4) To:pTa=p\Up2
T, is a join-conservative semi-closure operation and hence the join-
conservative closure operation T generated by T is given by Theorem
2.3.

(4.5) T={[To}=U, T}; therefore, pT=Uy, p'.

The equivalence generated by a relation p is given by applying the
following join-conservative closure operation to p.

(4.6) Q=[F, S, T], Q is called the equivalence operation.
Namely, pQ is the equivalence generated by p, and ¢ is an equivalence
iff c=¢0Q.

We have the following properties:

(4.7) F*=F, $*=S, T*=T;

(4.8) FS=SF;

(4.9) FT=TF;

(4.10) STS=TST=ST.

Let Q be the subsemigroup of P (cf. Lemma 2.1) generated by
F, S, T. It is interesting that Q is always finite. For this purpose we
can show the free semigroup Q* generated by F, S, T with the above
relation is finite.

Thus we have:
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THEOREM 4.1. The free semigroup Q* generated by F, S, T with the
product relations (4.7) through (4.10) is a partially ordered semigroup
composed of nine elements: F, S, T, ST, TS, FT, FS, FST, FTS,
with the following partial ordering diagram:

U

TuEOREM 4.2, Q=FST, that is, the equivalence generated by p is
p(FST) (df. [3]).

REMARK (1). Clearly Q=FST=FTIST, etc. But FST, SFT, STF
are the expressions for Q of the smallest length.

Let T* be the subsemigroup of O* generated by S and T'. Then

(4.11) Q* = TU {F} U FT*

where Q¥ is the union of the three disjoint subsemigroups. Every
element of FT* is uniquely expressed by the product of F and an
element of £*, and F commutes with every element of T*. Generally
let A and B be arbitrary groupoids, and 4! and B* be the groupoids
obtained by adjoining the identity 1. Even if 4 or B contains the
identity already, such a procedure is valid. The direct product 4! X B!
from which the identity of 41X B! is excluded is called the annexed
product of 4 and B. Then we can say that Q* is the annexed product
of {F} and T*.

REMARK (2). If E has a cardinal =3, then Q=%

Let G be a groupoid in the sense of [2] or [3], and let p be any rela-
tion in G. Operations Cy, C; and C are defined in the following way.

C, and C;
(4.12) pCr = p\J {(ax, b2);  E G, (a,b) € p},
pCi = p\J {(xa, xb); x € G, (a, b) € p}.

C, and C; are join-conservative semi-closure operations. C is defined
to be the closure operation generated by C, and C;. Then we have

C=[C,Cl=U Ci---Cif (where i is either  or J)

n

(4.13) =[Cz,Ci]  where Cz = [C/], Cr = {Ci].
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In particular, if G is a semigroup, then

(4.14) C*=C,, C}=C;, C.C1=C:C, and hence C=C,C..

Now we find the form of the operation determining the congruence
generated by a relation. Define

(4.15) N ={[F , S, C, T]}, N is called the congruence operation.

We have the following product-relations:

(4.16) FC,=C,F, FC;=C,F, and hence FC=CF;

(4.17) SC,=C.,S, SC;=C,S, and hence SC=CS;

(4.18) CRTCR = TCRT= CRT, CLTCL = TCLT= CLT, and hence
CTC=TCT=CT.

Let N be the subsemigroup of P generated by F, S, C, T. Then N
is also finite.

THEOREM 4.3. The free semigroup N* generated by S, F, C, T with
the product relations, (4.7) through (4.10), and the last equalities in
(4.16) through (4.18), is the annexed product of {F } and W* where 11*
is a subsemigroup generated by S, C, T and consists of twelve elements:

S,C, T, SC, ST, TS, CT, TC, STC, SCT, CTS, TCS.

N* is a partially ordered semigroup with twenty-five elements in which
FSCT 1s greatest.
The diagram of U* is

SC
~~ —
\/
S T C

THEOREM 4.4. p(FSCT) is the congruence generated by p, that is,
N=FSCT, (¢f. [3]).

REMARK (1). A finite semigroup in which N =MN* exists.

REMARK (2). If G is a semigroup, the free semigroup generated
by F, S, C,, Ci, T, consists of sixty-nine elements.

Finally, we show how to construct a congruence of a given meet-
type.

THEOREM 4.5. Let P be a join-conservative semi-closure operation. The
congruence o of meet-type P generated by p is given by
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o= pW where W= U (PN).

i=1

In particular, if P is a closure operation derived from an identity, then
W=PN.

REMARK (3). Kimura introduced in [4] a normal property on an
algebraic system. A congruence p is of meet-type iff G/p satisfies a
normal property.

We want to add the following fact to the introduction of this paper:

Recently Petrich dealt with the greatest semilattice decomposition
of a semigroup in Bull. Amer. Math. Soc. 69 (1963), 342-344, inde-
pendently of [9].
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