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1. Let H be a Hubert space, U(t) a group of unitary operators. A 
closed subspace D+ of H will be called outgoing if it has the following 
properties: 

(i) U(t)D+CD+ for * positive. 
(ii) r\i>oU(t)D+**{o}. 
(iii) U*<o U(t)D+ dense in H. 

A prototype of the above situation is when H is L2( — °°, °° î N), i.e., 
the space of square integrable functions on the whole real axis whose 
values lie in some accessory Hubert space Nt U(t) is translation by t, 
and D+ is L%(0f oo ; N). 

THEOREM l.8 If D+ is outgoing for the group U(t), then H can be 
represented isometrically as L%(-~ oo, oo ; N) so that U(t) is translation 
and D+ is the space of functions with support on the positive reals. This 
representation is unique up to isomorphisms of N. 

We shall call this representation an outgoing translation representa­
tion of the group. 

Taking the Fourier transform we obtain an outgoing spectral repre­
sentation of the group U(t), where elements of D+ are represented as 
functions in A+(N)f that is the Fourier transform of L(0, <& ; N). 
According to the Paley-Wiener theorem A+(N) consists of boundary 
values of functions with values in N, analytic in the upper half-plane 
whose square integrals along lines Imz = const are uniformly bounded. 

An incoming subspace P _ is defined similarly and an analogous 
representation theorem holds, D~ being represented by functions with 
support on the negative axis, that is, by L2( — <*>, 0; NJ). N- and N 
are unitarily equivalent and will henceforth be identified. In the 
application to the wave equation there is a natural identification of N 
and N-. 

Let D+ and £>_ be outgoing and incoming subspaces respectively 
for the same unitary group, and suppose that D+ and D- are orthog­
onal. To each function f (EH there are associated two functions k~ 
and k+, the respective incoming and outgoing translation representa-
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tions of/. The mapping &_—>k+f denoted by 5, is called the scattering 
operator and has the following properties: 

(i) S is unitary. 
(ii) S commutes with translation. 
(iii) S maps L2( — °°, 0, N) into L 2 ( - °°, 0, N). 
Properties (i) and (ii) follow from the fact that 5 is defined in terms 

of two different unitary translation representations of the same group. 
To deduce property (iii), we note that every function in L2( — <*>, 0, N) 
of the incoming representation corresponds to an element ƒ of D_; 
since we have assumed that D- is orthogonal to D+ it follows that 
the function representing ƒ in the outgoing representation will be 
orthogonal to L2(0, oo, N)f i.e., will belong to L2(—oo, 0, iV), as 
asserted in (iii). 

We take now Fourier transforms and define the operator S as 
FSF~l, F denoting the Fourier transformation. Properties (i)-(iii) 
for S translate into 

(i)' S is unitary. 
(ii)' S commutes with multiplication by scalar functions. 
(iii)' S maps A(N) into A(N) 

where A(N) is the Fourier transform of L2(— °°> 0, N) and thus con­
sists of the boundary values of functions analytic in the lower half-
plane. 

According to a simple special case of a theorem of Segal and Fourès 
[ l3] , an operator with properties (i)', (ii)' and (iii)' is multiplication 
by an operator valued function S(s), mapping N into iV, with the 
following properties: 

THEOREM 2. (a) S (s) is analytic in the lower half-plane. 
(b) The norm of %{z) is not greater than one f or every z. 
(c) S (z) is unitary for z real. 

S (z) is the Heisenberg scattering matrix. Extending the terminology of 
Beurling [ l ] , to the operator case S (z) is also an inner factor.4 

2. Let D+ and Z>_ be as before and denote by P+ and P ~ orthogonal 
projection onto the orthogonal complements of D+ and D- respec­
tively. Consider the one-parameter family of operators Z(t) defined as 

Z(f) = P+U(t)P-.. 

I t follows easily that for positive t, Z(t) annihilates both D+ and JD_; 
consider Z(t) for positive values of / and acting on K ~ H&D+&D— 

THEOREM 3. Zit) forms a semigroup over K. 
4 See [l] , [7] and [2] for the theory of inner factors. 
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This is very easy to prove directly from the postulated relations of 
P + and D- to each other and U(t). I t also follows from the inter­
pretation of Z(t) in the, say, outgoing translation representation. 
For, since H&D+ is represented by L2(0, <*>, N) and D~ by 
£2(0, 00, iV), K is represented by 

K «=> L2(0, 00, N) O £2(0, 00, i\0, 

and tóe action of Z(t) consists in shifting to the right followed by restric­
tion to the negative real axis. 

A subspace of functions K which is mapped into itself under such 
an operation is called a translation invariant space. I t is not surprising 
that K and Z(t) can be so represented, since according to a simple 
generalization of a theorem of Beurling every contraction semigroup 
Z(t) can be so represented, provided that for every u in K, | |Z(0^| | 
tends to zero as t tends to infinity. 

In the outgoing spectral representation K is represented as 

A (N)&$A(N); 

S is called the inner factor associated with the translation invariant 
space K. Again this is no surprise since according to a generalization 
due to Lax, [ó], [7] of a theorem of Beurling, see also Halmos [2], the 
orthogonal complement of the Fourier transform of every translation 
invariant space is of the form $A, where S is an inner factor. The im­
portance of this representation is that the associated inner factor con­
tains almost complete information about the spectrum of Z(i) over K: 

THEOREM 4.5 (a) Let p,be a complex number with negative real part] 
ix belongs to the resolvent set of the infinitesimal generator B of Z{t) if 
and only if the operator 

§07z) 

is invertible. 
(b) Let X be a complex number of absolute value less than one; X be­

longs to the resolvent set of Z{t) if and only if 

KT') 
is invertible for all numbers fx for which ^ ' = X , and if the norms of the 
inverses are uniformly bounded for all such ju. 

As corollary we obtain another proof of the well-known result of 
Phillips, see [ l l ] or [3], that if /x belongs to the spectrum of B then 

See [lO] for the scalar case. 
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e»* belongs to the spectrum of Z(t), but in general not conversely. 

THEOREM 5. If for some value of T, \\Z(T)\\ = a < l , then S (z) can be 
continued analytically into the strip Im z^ —log a/T. 

Analogous expressions can be derived for the location of the spec­
trum of any function of Z(i) and B\ from this we deduce 

THEOREM 5'. If for some T and some /J, Z(T){B-~ii)-1 is completely 
continuous, then &(z) can be continued into the upper half-plane as a 
meromorphic function. 

The definition of the scattering matrix depends on the choice of a 
pair of orthogonal incoming and outgoing subspaces. Let us call two 
outgoing subspaces D+ and D'+ equivalent if for sufficiently large posi­
tive T, U(—T)D+ contains D'+ and U(T)D+ is contained in D+. 
Following the derivation of Theorem 2 one can easily show that the 
outgoing spectral representations with respect to D+ and D+ are 
related by multiplication by an operator valued function 9TZ(JS) which 
is entire analytic, of exponential growth, and unitary on the real 
axis. Such a function satisfies the relation 

Sfïl*(g) = VïïrKz) 

for z real, so by analytic continuation for all z\ this shows that VÏÏT1 

exists for all z and is of exponential growth. 
Suppose that D+i D__ and D+, DL are two pairs of orthogonal in­

coming and outgoing subspaces which are equivalent. Then the asso­
ciated scattering matrices are related by 

S' = 2fTC+S2ftll\ 

Since the factors 2fïï+, Sftl_ and their inverses are uniformly bounded 
in any strip, we conclude from Theorem 4 that the associated semi­
groups have the same spectrum. 

Choose in particular D% as U(a)D+, and D<L as U(-~a)D„t a posi­
tive. As is easily shown, 

Sa(z) = e2iaz$(z). 

We denote the operator Z(t) corresponding to D± by Za(t). 

THEOREM 6. If fb is an eigenvector of Z&(/) with eigenvalue e*x
% then 

for a<b 

a a b 

f =P+f 

is an eigenvector of Za(t) with the same eigenvalue. 
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3. Let HQ denote the Hilbert space of pairs of functions ƒ = [/i, ƒ2] 
defined in Rn, normed by the energy norm: 

||/||2 = / ( | # / i | 2 + | ƒ*!*)<**. 

Define Uo(t) as the operator which relates the Cauchy data at time 
zero of solutions of the wave equation to their Cauchy data at time t. 
Uo(t) forms a one-parameter group of unitary operators mapping HQ 
onto Ho (conservation of energy). 

Consider a smooth, bounded, reflecting obstacle. Denote by H the 
subspace of H0 consisting of pairs of functions which vanish inside the 
obstacle, and denote by U(i) the operator which relates the initial 
data to data at time t of solutions of the wave equation defined out­
side of the obstacle and vanishing on it. U(t) forms a one-parameter 
group of unitary operators mapping H onto H. 

We shall call a solution of the wave equation defined for all values 
of x and / outgoing (incoming) if it vanishes inside the cone \x\ 
<t(\x\ <—t). We denote by D°± the data at time zero of outgoing 
(incoming) solutions. 

D% and P L are outgoing and incoming subspaces for the group 
Uo(t) in the sense of §1 ; the first two properties are obviously satisfied 
and the third is an easy consequence of Huygens* principle. As shown 
in [9], D% and Dl. are orthogonal for n odd ; we give here a new proof 
based on an explicit form for the translation representation. 

We start with the representation of functions in terms of their 
Radon transforms: 

(3.1) f(x) — I h(x*co, (S)do) 
J M~i 

where h(s, co), the Radon transform of/, is a function of 5 and co de­
fined for all real s and all vectors co on 5n-i which is even : 

h(—s, -co) = h(s, co). 

A Parseval relation holds: 

(3.2) Ml* = INI-c-u/! , 

where we define 

IN!2-* = f I k(s, co) I Wco, — k = h. 
J dsq 
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COROLLARY. 

(3.2)' ll/lll = ||4-(n-3)/2 

Let hi and hi denote the Radon transforms of ft and ƒ2 respectively 
and define h as 

h = h\ — I hi. 

It can be verified immediately that the function 

(3.3) u(x, t) = I h(x-co — tjcc^do) 

is a solution of the wave equation and that its initial data are ƒ1 and ƒ2. 
Furthermore, by (3.2) and (3.2)', 

(3.4) 11/11 = |HU-s)/2 
Let k be the (n — 3)/2 fold integral of h\ regarding i a s a function 

of ^ whose values lie in the Hilbert space N~Li(Sn-\)\ we conclude 
from (3.3), (3.4) that ƒ—*k is a translation representation for UQ(£). 
We claim that for n odd this representation is both incoming and out­
going. 

I t follows from (3.3) that if h(s) vanishes for negative (positive) 
values of s, then u(x, t) vanishes in the forward (backward) cone 
\x\ <t (\x\ <—t). Conversely: 

THEOREM 7. Ifu(x, t) vanishes in the forward {backward) cone then h 
vanishes on the negative {positive) axis. 

SKETCH OF PROOF. If u vanishes in the forward cone, all its space 
derivatives vanish on the positive t axis: 

0 = (2?i«)(0, t) = ƒ JhU\-t, co)Jco. 

Multiply this by any smooth test function <f>(t) whose support lies 
on the positive £-axis, integrate with respect to t and perform \j\ 
integrations by parts: 

(3.5) 0 - J ^h{-tf<a)^{i)d(ûdt. 

From (3.5) and the fact that h has finite (3—n)/2 norm it follows by 
an approximation procedure that for every smooth test function %(0 
with compact support on the positive / axis and every multi index j 
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A(- / , 0))œJ'x(t)do)dt = 0. 

But this implies that h(s) vanishes for s negative; then so does k 
for n odd. 

REMARK. In the proof we only used the fact that u(x, t) has a zero 
of infinite order on the positive /-axis; thus we have shown that this 
condition implies that u vanishes in the forward cone—a new proof 
for a special case of a theorem of Fritz John, 

COROLLARY. For n odd, D+ and D- are orthogonal. 

For the group Uo(t) we have found a representation with D\ and 
D l as outgoing and incoming subspaces. The associated scattering 
operator is the identity. We turn now to the group U(t) and take for 
D+ and D_ the initial data of solutions which vanish in \x\ <p+t 
for / > 0 and \x\ <p — t for £<0 respectively;6 we claim that these 
subspaces are outgoing and incoming respectively for U(t) : Properties 
(i) and (ii) are immediate while property (iii) is proved in [8]. P + 

and D_ are orthogonal since they are subspaces of D\ and Di.. Thus 
there exists an associated scattering matrix. Conversely, we can prove 

THEOREM 8. The scattering matrix uniquely determines the scattering 
obstacle. 

In [9], Cathleen Morawetz and the authors have shown that for 
star-shaped obstacles | |Z(0| | is less than one for t large enough. By 
Theorem 5 it follows that the associated scattering matrix can be 
continued analytically into a strip O g l m s ^ r . For any obstacle we 
have this result: 

THEOREM 9. For Re X positive Z(2p)(B — X)""1 is completely continu­
ous. 

By Theorem 5 ' this implies that S(s) can be continued into the 
upper half-plane as a meromorphic function. This implies that the 
zeros of S(s) in the lower half-plane are discrete; furthermore, for 
each 2, ${z) has a closed range whose codimension is finite and equal 
to the dimension of the nullspace of 2>{z). 

SKETCH OF PROOF. 

LEMMA 1. The operator 

M « U(2p) - ff0(2p) 

8 P is chosen so large that the sphere | x\ <p contains the obstacle. 

ƒƒ 



1964] SCATTERING THEORY 137 

annihilates all f in H which vanish in \x\ <3p. 

LEMMA 2. Uo(2p) maps the complement of D„ into D+. 

Lemma 2 implies that P + t /o(2p)P- = 0, whence for t^2p 

(3.6) Z(t) = P+[/(/)P_ = P+MU(t - 2p)P_. 

So 

Z(t)e-*»dt 

= e2^P+M I Uit - 2p)e~udtP- = P+M(A - X)-*?-, 

where A denotes the infinitesimal generator of U(t). I t is easy to show 
that (A —X)""1 raises by one the degree of differentiability; since by 
Lemma 1 the value of Mf does not depend on the values of ƒ outside 
the sphere \x\ ^3p , it follows by Rellich's compactness criterion that 
M (A —X)"1 is a completely continuous operator. 

For the pure initial value problem for hyperbolic equations with 
variable coefficients it is known that the sharp propagation of signals 
is along characteristic rays. This generalized Huygens principle can be 
reformulated as follows: 

Let G\ and G% be two closed sets in Rn with the property that no 
characteristic ray starting at time zero in G\ passes through G2 at 
time t. Let P i and P% be operators such that the range of P\ consists 
of functions which vanish outside of Gi, while P2 annihilates all func­
tions whose support lies outside G2. Then 

P*Uf>(t)Ph 

is completely continuous. 
We believe that this principle also holds for the mixed problem as 

well (for general hyperbolic equations with variable coefficients), 
provided that rays are interpreted as reflected rays. A demonstration 
of this for the interior problem for convex domains has been given by 
Povsner and Suharevskiï [12]. 

We say that an obstacle has property L if there exists a number / 
such that any ray starting in the sphere \x\ ^3p leaves the sphere 
\x\ g 3 p after time /. 

REMARK. Star-shaped obstacles have property L. 
Assuming the generalized Huygens principle to hold we assert: 

THEOREM 10. Z(t) is eventually compact if and only if the obstacle has 
property L, 
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PROOF. The identity (see [9]) 

(3.6)' Z(t + 4p) = P+MU(t)MP-

follows similarly as (3.6). Take both G\ and G2 as the sphere | x\ ^ 3 p ; 
the operator MP- has the property required of P i while M has the 
property required of P^ So by the generalized Huygens principle 
Z(Z+4p) is completely continuous. 

The necessity of property L follows from known properties of 
propagation of high frequency signals along rays. 

Theorem 10 implies that Z(t) has a standard discrete spectrum. 
There can be no eigenvalue of absolute value one since this would 
correspond to a solution of the wave equation which is a purely 
imaginary exponential in time, and according to a theorem of Rellich 
there are no such solutions with finite energy. Thus the spectral radius 
of Z(t) is less than one; by the Gelfand formula we conclude that 
||ZOO11 decays exponentially. Thus Theorem 10 gives another proof 
of the result of [9]. 

Similar reasoning gives the following result: let ƒ be any element 
of K, XA ' / i * t s f ° r m a l Fourier expansion in terms of the eigenfunc­
tions of Z(t) ; then 

is an asymptotic expansion for Z{t)f. 
Next we wish to characterize the eigenvalues and eigenfunctions of 

the generator B of Z(t). For this purpose we say that a solution of 
the reduced wave equation 

(3.8) A W - M % = 0 

in the exterior domain is outgoing if the free space solution of the wave 
equation with initial data ƒ = [u, — pu], in symbols Uo(t)f9 vanishes 
for \x\ </—p for all t>p. This notion is equivalent with the Sommer-
feld definition of outgoing when JU is imaginary. Moreover for arbi­
trary n in the case n = 3 such a solution of the reduced wave equation 
can be represented as 

1 r ( du du\ 
u(x) = — I [u v — J dSy 

4 7 r J r \ dn dn/ 
where v = e'ir/r, r*=|#—y\ , and T is any smooth surface containing 
the obstacle but not containing x. The converse is also true. 

THEOREM 11. pis an eigenvalue of the generator of Z(t) if and only 
if there exists an outgoing solution of the reduced wave equation (3.8) 
satisfying the boundary conditions. 
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SKETCH OF PROOF. We consider Za(t) = P+ U(t)Pt as a—><*> ; in the 
limit this is simply U(t). According to Theorem 4 the eigenvalues p. 
of the generator of Za(t) are simply related to the zeros of the scat­
tering operator; thus they are independent of a^p. The eigenfunc­
tions depend upon "a" but according to Theorem 6 in a rather trivial 
fashion. In fact for b>a*tp, 

(3,9) f* = Pïf\ 

Since P+ does not alter the data inside the sphere \x\ <a, it follows 
that fa(x)=fb(x) for \x\ <a. This shows that the limit 

Urn fa(x) s f(x) 
a—>«> 

exists. 
Each fa satisfies 

Za(t)fa = e-»%. 

Since Za(t)f*== U(t)f for \x\ <a, fa is a solution of the reduced wave 
equation there. So for \x\ <a, fa is of the form 

fa » (Ua, —flUa), 

ua a solution of the reduced wave equation 

AUa — fX2Ua = 0 

which is zero on the obstacle. Since ua(x)=Ub(x) for \x\ <a, the limit 

lim ua — u 
a—* co 

exists, u is in the exterior a solution of the reduced wave equation and 
is zero on the obstacle. The data ƒ = [u, JJLU] can be thought of as a 
generalized eigenfunction of U(t) ; not only does it not lie in H, but 
it blows up exponentially in | x \. fp is orthogonal to D_ and so is ƒ* 
for all a^p by (3.9). As a consequence the free space solution Uo(t)f 
vanishes in \x\ <t—p for t>p so that u is outgoing. 

Conversely if u is an outgoing solution of the reduced wave equation 
(3.8) satisfying the boundary conditions, then e"^ is an eigenvalue of 
Z(t). To prove this one shows that the free space translation repre­
sentation of ƒ = [u, —JJLU] is of the form 

h{s, w) = < , v 

U(w)e"', s>p. 

Setting 



140 P. D. LAX AND R. S. PHILLIPS [January 

(h(s,(û), s <a, 
ka(s} co) = < 

10, s > a, 

one proves that ha is the free space translation representation of the 
eigenf unction of Za(t) corresponding to the eigenvalue er*1. 

The above ideas can also be employed to obtain an explicit de­
scription of the incoming and outgoing spectral representations of 
U(t) from which we will in turn be able to obtain an explicit formula 
for the scattering operator S(z). We shall denote by ƒ<>, ƒ-, and ƒ+ 
the free space, incoming, and outgoing spectral representations re­
spectively of a given initial data ƒ. 

These spectral representations are given by scalar products of ƒ 
with certain improper eigenf unctions of Uo(t)t respectively U(t). We 
shall show that these improper eigenfunctions consist of exponentials 
plus certain incoming and outgoing solutions. We recall that the free 
space spectral representation for Uo(t) is simultaneously incoming 
and outgoing. Thus Di. and D% map onto A„(N) and A+(N) respec­
tively, while D - and I>+ map ontyer&A-iN) and eipzA+(N) respec­
tively. We shall limit our considerations to the case w = 3. 

THEOREM 12 (SPECTRAL REPRESENTATION FOR J7O(J)). 

(3.10) /o(z,co) = (ƒ,*<>( • ,* ,«)) 

where ( , ) denotes the HQ inner product and 

4TT8/VO(^, », ») = 1er-*»-*, iz er<«*-«]. 

The main tool employed in the derivation of (3.10) is the Fourier 
transform. 

THEOREM 13 (INCOMING AND OUTGOING SPECTRAL REPRESENTA­

TIONS FOR U(t)). Let v+(vJ) be the outgoing (incoming) solution of the 
reduced wave equation 

Av + z2v = 0 

satisfying v+eri9X'u=:0 on the obstacle. Set 

4TT8 /V±(^, *> co) = [v±(x, z, co), izv±(x, z} co)] 

and define 

4>± = 0o + ik . 

Then 

(3.11) ?±(z, co) = (ƒ, £ F ( - , z, co)), 

where the ( , ) denotes the inner product in H. Note the switch in signs. 
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SKETCH OF PROOF FOR THE INCOMING REPRESENTATION FORMULA. 

Step one. To verify (3.11) for data in £>_. I t is required that data 
in £>- have the same representation as in the free space spectral 
representation. This in turn requires that (ƒ, \J/+) = 0 for all ƒ in D~. 
Now for ƒ = Uo(—T—p)w where w has support in \x\ < r , it is clear 
that 

(ƒ, *+) = (w, Uo(r + p)*+) = 0 

since Uo(r+p)\l/+ vanishes for \x\ < r . I t is proved in [9] that linear 
combinations of such ƒ are dense in D__ and hence (3.11) shares with 
(3.10) the property of being an isometry in D~. 

Step two. Extend the isometric property of the representation to all 
translates of D-. A simple integration by parts shows for any ƒ in DA 
that 

— Ui) = &ƒ_(*), 
at 

where ƒ (t) = U(t)f. As a consequence 

This extends the isometry of the map to all of the translates of P _ and 
hence to all of H since the translates of XL. are dense in H (see [8]). 
I t also follows that U(t) is represented as multiplication by eizt in 
this representation. 

Step three. The map ƒ—»ƒ_ is onto L%{— 00, 00 ; N). In the case of 
the free space representation of Uo(t) it is known that the translates of 
£)_ fill out L^ — °°, °° î N) in the representation space. Since D_ and 
translation are represented by the same objects in both the free 
space and incoming spectral representations, it follows that the map 
ƒ—>ƒ-. is onto. 

THEOREM 14. The scattering operator is given by 

ƒ+(*, W) = [«(«)ƒ_(*, •)](«) 

(3 1?) r 
= ƒ_(*, co) - 2(27r)l'Hz I * ( - « , co, *)* ƒ_(*, »)<», 

^-(r£, 2, co) ~ r~V'*r s(£, eu, z) as r —» 00. 

SKETCH OF PROOF. I t suffices to determine the behavior of S(s) on 
D~ since S commutes with U(t) and since translates of D - are dense 
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in H. Now for ƒ in D_, / - = / o so that §(*)ƒ_=ƒ+ simply becomes 

A straightforward calculation now yields (3.12). This is roughly what 
one expects from the classical theory and shows in particular that 
$(z) differs from the identity on N by an operator with a smooth 
kernel. 

Much of the foregoing can be generalized to solutions of symmetric 
hyperbolic equations which satisfy conservative boundary conditions 
on some obstacle, provided that these boundary conditions are elliptic 
for the spatial part of the operator. That there are conservative 
boundary conditions which are not elliptic is somewhat surprising. 
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