
SPLINE INTERPOLATION AND BEST 
QUADRATURE FORMULAE 

BY I. J. SCHOENBERG 

Communicated by Felix Browder, October 9, 1963 

1. The spline interpolation formula, A spline function S(x), of 
degree &( = 0)> having the knots 

(1) XQ < %i < • • • < xn, 

is by definition a function of the class C*"*1 which reduces to a poly
nomial of degree not exceeding k in each of the n + 2 intervals in 
which the points (1) divide the real axis. The function S(x) is seen to 
depend linearly on n+k + 1 parameters. In [5, Theorem 2, p. 258] 
are given the precise conditions under which we can interpolate 
uniquely by S(x) arbitrarily given ordinates at n + k + 1 points on the 
real axis. 

For the remainder of this note we set k = 2m — l (l^m^n) and 
single out from this family of spline functions the 

CLASS 2OT: The class of spline f unctions S(x) of degree 2m — 1, knots 
(1), and the additional property that S{x) reduces to polynomials of 
degree not exceeding tn — lin each of the ranges ( — <*>, XQ) and (xn, + oo ). 

The restriction that mSn is essential, otherwise Sm reduces to 
7rm_i (here and below Tk denotes a generic polynomial of degree â k, 
as well as their class). In a paper [ l ] soon to appear C. de Boor ob
serves tha t [5, Theorem 2] implies the following interesting 

THEOREM 1 (C. DE BOOR) . Given m ( l ^ m ^ w ) , the points (1) and 
also arbitrary reals y» (i = 0, • • • , n) , then there is a unique S(x) such 
that 

(2) S(xi) = y4 (i = 0, • • • , n). 

Let us now consider this interpolating spline function S(x) in a 
given finite interval a^x^b containing the points (1). Its particular 
interest is due to the following 

THEOREM 2 (C. DE BOOR). Letf{x)E:Cm^l[a> 6]> having an absolutely 
continuous f ^"^{x), and be such that 

f(xi) = yt (i » 0, • • • , n). 

If S(x) denotes the interpolating spline function of Theorem 1 then 

f (fM(x))2dx â f (SW(x))2dx 
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with equality if and only iff(x) = S(x).1 

In other words: The interpolating S(#)£2m minimizes the integral 
Ja(y(m))2dx among all interpolating functions and in this sense S(x) 
is the best interpolating function for the order m. For m = 1 S{x) re
duces to the linear interpolation between consecutive points while 
S(x)=yo if x^xo and S(x)=yn if x^xn. For m = 2 these results are 
due to Holladay [2]. The periodic analogue for m = 2 was found by 
Walsh, Ahlberg and Nilson [8] and for an arbitrary m see [9]. The 
results of [l] and [9] were also found independently, but later 
(September 1963), by the author (see [7]), Holladay and de Boor 
consider only the case when a~Xo, xn = b. 

We may express the interpolating S(x) of Theorem 1 in the form 
n 

S(x) = YjJvLvix), 
0 

where Lv(x) are the fundamental functions, i.e. Li(xj) = 5,-y. The func
tion ƒ(x) being defined in [a, b] we consider the interpolation formula 
(I. F.) 

(3) ƒ(*) = £ƒ(*)£,(*) + *(*;ƒ) 
0 

which we call the spline I. F. of order m (rn^n). Observe that 
R(x; 7Tm_i)=0. 

2. Best quadrature formulae. By integrating (3) over the range 
\ay b] and setting 

(4) Ay = I Lv(x)dx 
J a 

we obtain the quadrature formula (Q. F.) 

(5) f f{x)dx = £ Avf{xv) + RA(f) 
J a 0 

which is evidently also exact if f(Eirm^i, i.e. i?A(7rw-i) =0. 
1 As a matter of fact the interpolating spline S(x) of Theorem 1 enjoys yet another 

fundamental minimal property to be found in [7, Theorem l ] . It may be stated as 
follows: Let f(x) be defined as in Theorem 2 and let S(x) be the unique element of SOT 

interpolating f(x) at the points (1). Then S(x) is also uniquely characterized^ up to an 
additive 7rm_i by the condition: (*) To minimize fa{S^\x)-J^Kx))Hxfor S(*)£2m. In 
[7] Theorems 1 and 2 are derived from the minimal property (*) of S(x). The prop
erty (*) was discovered by Walsh, Ahlberg and Nilson [8] for the periodic case of 
cubic splines (m = 2) and apparently now generalized by them to all m in the periodic 
case (see [9]). 
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Concerning quadrature formulae A. Sard [4] proposed in 1949 the 
following very reasonable scheme: Let l^m^n and let 

(6) f f(x)dx - J2 Bvf{xv) + RB(f) 
J a 0 

be a Q. F. which is exact if f{x) GTTW-I* This requirement is equivalent 
to the relations 

Jr+l _ ar+l n 
(7) — — = E Bvxv (r = 0, • • • , m - 1), 

r+1 v-o 
which still leave n — rn + 1 free parameters. These are disposed of as 
follows: By Peano's theorem [3] we can write 

(8) RB(f) - . * 1N> f hK{x)f^(x)dx 

and we now determine the Bv by the requirement that 

(9) I {K{x))Hx = minimum, 
J a 

with the side-conditions (7). This method leads to a Q. F. (6) which 
Sard very appropriately calls the Best Q. F. for the given xv, given 
[a, 6] and given order m. 

Sard computes the coefficients Bv of (6), for equidistant xP at unit 
steps, (a, &) = (#o, xn) and m = l, 2, 3, 4 and w = l , • • • , 6 (tn^n). 
Holladay [2] computes the coefficients Av of (5), for m = 2, equi
distant #„ (a, &) = (XQ, xn) and w = 2, 3, • • • , 10. On comparing their 
tables it is seen that Holladay's formulae are identical with Sard's 
for w = 2.2 

That these are no mere numerical accidents is shown by 

THEOREM 3. The Q. F. (5), obtained by integrating the spline I. F. 
(3), is identical with Sard's Best Q. F. (6). 

The key to the proof is the following remark: The I. F. (3) is not 
only exact if / E ^ m - i but also if / G S W , because of the unicity in 
Theorem 1. Therefore also the Q. F. (5) is exact if / G S m . Conversely, 
this property uniquely characterizes (5), for if f(x) = Lv(x) and 
RA(LV)~0, then (5) implies (4). 

The identity of (S) with (6) will therefore follow as soon as we have 
established the following 

* The author is here performing the meritorious service of decreasing the number 
of known Q. F. by showing that two known sets are identical. 
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LEMMA. Sard's Q. F. (6) is exact if / £ 2 m . 

PROOF. We assume the relations (7) and then by Peano's theorem 

1 » » 1 w m-i 
K(x) = — (b — x)+ (a — x)+ — 2 3 Bv(xv — #)+ 

m m o 
( — 0 0 < X < oo ) , 

where we use the function y+ = (y +1 y\ )/2. We now solve the problem 
(9), (7) by Lagrange's multiplier method and consider the expression 

l r& m~1 / n 4.1 4.1 —1\ 

£ = — I (^(af))»^ + ZXr ( 2 # A - (b - a )(r + 1) ). 

Its partial derivatives dE/dBi furnish the n + 1 relations 

/

& ( 1 m n —î  —i 

< (b — X) + 23 ̂ (tf* ~ #)+ f (Xi ~~ ^)+ ^ 
(io) J l w ° ' 

+ £ ^ =* ° (i = o, • • •, »), 
which are satisfied by the coefficients Bv of (6) together with ap
propriate constants Xr. 

As a preliminary step towards the proof of the Lemma let us evalu
ate the integral appearing in (10) and show that (10) may also be 
written in the equivalent form 

1 9 n 9 1 *ft-~l 

—— (%i — a) m + 22 Bv(xi — xv)+ + 23 Xr' %i = 0 
(11) 2m „«o r-o 

(i = 0, • • • , »), 

where the X/ are proportional to the Xf« T o this end we observe t h a t 
(7) are equivalent to the ident i ty 

1 1 » 
— (a - x)m (b - x)™ + 2 3 ^(*v - x)™"1 = 0. 
m m o 

Subtracting this vanishing expression within the curly brackets in 
(10) and using the identity y+T1—ym-1 « ( — l)m(~:y)+~\ we may write 
(10) as 

.̂N I \ 0 - A?)m + ( - l)m 23 -Br(* - «0+ X t (*< - *)+ * #* 
) ) «/a v w o ; 

m-~l 
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Now the integrals can be evaluated explicitly: 

b 

(a — x) (Xi — x)+ dx = (—1) To*(%% — a) , I 
ƒ» b 

(x — Xp) (xi — %)+ dx = 7i-(xi — #„)+* 

where 

7o I P(f - t)m-Ht, yi= I t^Kl - 0*1"1*. 
«^ o *̂  o 

Observing that 71 ^ y o and substituting the values just found into 
(10'), we see that it reduces to (11) where Ar' «=» ( — l)wXr/(270). 

A proof of the Lemma now follows easily. Indeed, the most general 
5 G S m has the form 

n 

(12) S(x) = 23 Ci{xi - x)+~ + Pm-i(x) (C< constants, Pm„i G 7rm-i) 
o 

in which the condition that S(x) GÎTTO_I in ( — oo, x) requires the rela
tions 

(13) X) C&i = 0 (r = 0, - • - , m - 1). 
t=0 

But then 

•MS) = S CiRB((Xi - flp)^1) + RB(Pm-l) 

or, since the last term vanishes, 

n 1 n n 

*B(5) = Z ^ (*< - a) M - X) Ct E 5,(«i - nv)+"~ • 
o 2m t̂ o y=o 

But the right-hand side expression vanishes: Indeed, we obtain it by 
multiplying the left side of (11) by — d and summing over i and then 
take into account the relations (13). Thus RB(S) = 0 and the Lemma 
is established. 

3. Concluding remarks. Let me point out again, as I already did in 
[ó], tha t the connection between the problems of interpolation and of 
mechanical quadratures becomes closer and more illuminating if we 
interpolate not only by polynomials but by the wider class of splien 
functions. The Q. F. (6) was derived by a method entirely foreign 
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to interpolation and yet, as seen, it arises also from the I. F. (3) by 
integration. There are many other similar examples. 
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