
THE DOMAIN OF DEPENDENCE INEQUALITY FOR 
SYMMETRIC HYPERBOLIC SYSTEMS1 

BY CALVIN H. WILCOX 

Communicated by Ralph Phillips, August 19, 1963 

1. Introduction. Energy propagates through space with finite 
speed. This is a characteristic feature of wave propagation phenom­
ena and, indeed, it is a postulate in relativistic physics. Recently 
[3; 4] the author demonstrated this property by means of a priori 
"domain of dependence" inequalities for solutions of initial-boundary 
value problems for Maxwell's equations and second order hyperbolic 
equations and used the inequalities to prove existence, uniqueness 
and regularity theorems for these problems. In this announcement 
the results are extended to the most general systems of linear partial 
differential equations that admit an energy integral, the symmetric 
hyperbolic systems of K. O. Friedrichs [ l ] . 

The systems have the form 

dup i dup 
(1.1) Eap{x) = Aap(x) h Bap(x)up +fa(x, t) (a = 1, 2, • • • , w), 

dt dXi 

where EaS , Al
ap and Bap are real-valued functions of x=(xi, x%, • • •,#») 

£ i ? n and up~up{x, t) and ƒ« are real-valued functions of x and tÇ-R1. 
The summation convention is used; i.e., repeated indices i and j8 are 
summed over their ranges ( l ^ i ^ w , l ^ j S ^ w ) . System (1.1) may 
also be written in matrix notation 

du du 
E— = Ai +Bu+ff 

dt dXi 
where E = (Eap), Ai==(Ai

ap) and B = (Bap) are mXm matrices and 
u=(ua) and ƒ=(ƒ«) are w X l (column) matrices. 

A system (1.1) is symmetric hyperbolic if E and A1 ( i = l , 2, • • • ,n) 
are symmetric and E is positive definite. The form t\—\Eapuaup is 
interpreted as an "energy density" (energy per unit volume). The 
forms 2» = —iA^pUaUp are interpreted as the components of a 
"Poynting vector" describing the flow of power (energy per unit area 
per unit time). They are related by the "conservation of energy law" 

dr) d%i 1 / dA%
ap\ 

1 = — I Bap + Bfia ) UaUp + faUa. 
dt dXi 2 \ dXi/ 

1 Sponsored by the Mathematics Research Center, United States Army, Madison, 
Wisconsin, under Contract No. DA-11-022-ORD-2059. 
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The energy per unit time entering a domain QC.Rn through its 
boundary ô£2 is 

(1.2) I XifiidS = I rjViftidS (tii = normal vector on d&) 
J dû J an 

where Vi^Xi/rj. Thus, Vi may be interpreted as a "velocity" of energy 
flow, which suggests that the speed with which energy propagates in 
£2 is bounded above by 

(1.3) c = s u p — — > 

where the supremum is over xGO, £G-RW and unit vectors m (n#ii = 1). 
This property of c is verified below (§3) by the domain of dependence 
inequality. 

This announcement deals with initial-boundary value problems for 
(1.1) in domains fl, subject to dissipative, local boundary conditions 
on 30. Precise definitions of the boundary conditions are given in §2. 
The domain of dependence inequality is formulated and proved in §3. 
Its application to existence, uniqueness, and regularity theorems for 
initial-boundary value problems, together with complete proofs of all 
the results and their application to particular systems, will be given 
elsewhere (see [5]). 

Throughout this paper, 0 denotes an arbitrary domain (open con­
nected set) in Rn, and JE«Ô(#)> A%{X) and Ba$(x) are assumed to be 
defined (almost everywhere) in 0 and to satisfy the conditions 

(1.4) Eap(oc) = Epa(x), Aap(x) = Apa(%), Bap(x) and dAap(x)/dXi 

(which is defined as a distribution) are bounded, Lebesgue-measura-
ble functions in Q, and 

(1.5) There exists a positive constant £° such that 

£«*(*)*«& è E°Ua for * G Û and £ G Rm. 

2. Boundary conditions. If <£ = (<£«) G CQ(0) then 

i d<t>p 1 dAap 
(A4>)a = Aap ~ h ~ fa (a = 1, 2, • • • , m) 

dXi 2 axi 
defines an operator A: Cj(Q)—>L2(Q), and A+, the formal adjoint of 
A, equals —A. This suggests the 

DEFINITION. If u is in L2(B), then we say that Au exists and is 
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equal to v in Z,2(0) provided that 

/
ua{A<j>)ad% + I va(l>adx = 0 for all <t> G Co(0). 

The space 1,204; 0 ) = {w: ^ and ,4w are in 1,2(0)} is a separable 
Hubert space with respect to the scalar product 

(U, V)LS(AIQ) = I {uaVa + (Au)a(Av)a}dx. 

In classical theory, the set of functions u which satisfy a linear 
homogeneous boundary condition on 90 and have AuÇzL2(Q) form 
a linear space containing Co(0). This suggests the 

DEFINITION. A boundary condition T for A is a closed linear sub-
space T of L2(A ; 0) such that Cj(0)CT. 

Each boundary condition T for A determines an "adjoint" bound­
ary condition T* for A denned by 

T* = L2(A;ti)r\ <v: f {ua(Av)a+ (Au)ava}dx~ 0for all u G T> . 

I t follows tha t ( r * ) * = r . Thus, boundary conditions for A occur in 
adjoint pairs. 

DEFINITION. T is a dissipative boundary condition for A provided 
that 

ƒ. ua(Au)adx g 0 for all « G T . 

This concept is equivalent to that of a dissipative operator due to 
R. S. Phillips [2]; see [5]. 

DEFINITION. T is a local boundary condition for A provided that 
4>uET whenever 0GCj(i^w) and u&T. 

Examples of local, dissipative boundary conditions are provided by 
the classical systems of acoustics, electromagnetics and elasticity. 
With each is associated a pair of "natural" boundary conditions, cor­
responding to hard and soft boundaries in acoustics, perfect electrical 
and magnetic conductors in electromagnetics, and fixed and free 
boundaries in elasticity; see [5] where this is verified and a class of 
systems and boundary conditions generalizing these is described. 

3. The domain of dependence inequality. Each boundary condition 
T for A is a closed subspace of L2(A ; 0) . Hence, T is a separable Hu­
bert space relative to the scalar product of L2 (A; 0) . If 1 = {t:Q<t<T} 
then the space 
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F « £,(ƒ; T) H LI(I; £,(0)) 

(see [4, §2] for definitions) defines a class of functions w = w(x, 0 for 
which 

du du l â^»' 
E —i A% = Au u and Bu 

dt dXi 2 dXi 
exist in L2(Q)i Q = QXJT, and u satisfies the boundary condition 
T (u(t) G r for almost every / £ / ) . The domain of dependence inequal­
ity is concerned with the related space Flo° for which E(du/dt), etc., 
are in Ll™(Q). To describe it let 

pvox = Y C\ {u: u is equivalent to zero outside a bounded set K C 0} , 

and 

T = U (A ; Q) 

r\ <u: ƒ {ua(Av)a + (Au)ava}dx = 0 for all v G ( r* ) v o 4 

and define 

F loc = {u: u G L2(/i Li(i4 ; K f\ Q)) H ^ ( / ; L2(X H 0)) for each 
bounded measurable set JK" C Rn, and w(£) G r l o c for al­
most all / G / } . 

THEOREM (DOMAIN OF DEPENDENCE INEQUALITY). Let T be a local, 
dissipative boundary condition for A. Then the speed c defined by (1.3) 
is finite and every u(~Flo« satisfies 

(3.1) o W * } 

f EapUa(T)Ufi(T)dx 

S ekT\ I Eapua(0)up(0)dx + 2 I e-ktfauadxdt 

where 

du / 1 dA{\ 
/ « E Au-iB J u} 

dt \ 2 dXi) 

S(x°> a) = {x: J x — x°\ g a} and 

77*0 constant k depends on n and the bounds for the coefficients only. 
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PROOF. The finiteness of c follows from (1.4) and (1.5). The proof 
is omitted. Also, only the special case B—^dA{/dXi is treated. To 
prove (3.1), take ô > 0 and le t^aGC^i? 1 ) have the properties ^a(r) = 0 
for T ^ Ö , ^ 5 ( T ) = 1 for T^—Ö, and ^ ( T ) ^ 0 everywhere (so O r g ^ r ) 
^ 1 everywhere). Put $(#, 0 = ^ a W i T = | # — # ° | —a--c(T — t). Then 
0GC,

O
OO(Ö) for S sufficiently small, and <j> tends to the characteristic 

function of C(x°, a) when 8—»0+. 
Let M G P 0 0 , define f^E(du/dt)—Au and consider 

/ v r c duv c , v 
(3.2) I faua(j)dxdt = I <t>uaEap d#J/ — I 4>ua(Au)adxdt = 7i — ƒ2. 

Integration by parts with respect to / gives [4, Theorem 2.3] 

I f 1T I f d<£ 
(3.3) Ii — — I <f>EapUaUp dx I (EapUaUp) — dxdt. 

2 J & J o 2 J Q dt 

Next, V(0 ( - , /))GCoCRn) for each t&I, and «(- , t)ETlo° for almost 
every £ £ / . Hence, V(0( -> t))u(-, t)<E:T because T is a local boundary 
condition for ^4. Thus, since T is dissipative for A9 

,„ ,N 0 è V($(%}t))ua(x,t)(A\/(<l>(%,l))u(x,t))adx 
(3.4) J Q 

for almost all / £ I. 
Now, (Axpu)a = \l/(Au)a+A^idxp/dxi)u$, whence (3.4) may be written 

0 ^ 1 <j>(x, t)ua(x, t)(Au(x, t))adx 
J to 

/

d\Z(4>(x, t)) i 
\Z(<j>(x, t)) AapUaix, t)up(x, t)dx (a lmost all / G / ) . 

n dis­
integrating over t(E.I and using 

dV<t> 1 H 

dXi 2 dXi 
gives 

1 f » d<l> 
(3.5) 0 è 12 H I AapUaUp dxdt. 

2 J Q dXi 
Combining (3.5) and (3.3) with (3.2) gives 

(3.6) 
/

faua(t>dxdt ^ — I Ea$UaUfi<t> dx 
Q 2 J çt J o 

I f / d<t> . d<t>\ 
EasUaUB • — AaBUaUa I dxdt. 

2 J A dt dxj 
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But 

d<t> 

o t 

d<t> ° I ° i 
= ^a'MO*^ — Xi)/\ x — x \ = ypi{r)ni where »»•»< = 1. 

dX{ 

Hence, the integrand in the last integral is 

(3.7) ^i(r)(EapUau^c — AapUaUptii) g 0, 

since \p{ ( r ) ^ 0 and Ea / jW^c-^L^CxJga&w^O for all x 6 Ö , £G-Rm 

and Ui with «<»»•= 1, by the definition of c. Combining (3.6) and (3.7) 
gives the estimate 

(3.8) 
/

f*u*<t>dxdt è — I Ea^ua(T)u^T)<t>(T)dx 
Q 2 •/ ft 

I Eaf&a(0)Ufl(0)4>(0)dX. 
2 J a 

Finally, when 5—>0, 0 tends boundedly to the characteristic function 
for C(#°, a). Hence, passage to the limit in (3.8) gives (3.1) with 
fe = 0, which completes the proof for the case B=idAi/dxi. In the 
general case, a simple variant of this argument gives (3.1) with a 
nonzero k (cf. [S, Theorem 6.1]). 
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