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1. Introduction. Energy propagates through space with finite
speed. This is a characteristic feature of wave propagation phenom-
ena and, indeed, it is a postulate in relativistic physics. Recently
[3; 4] the author demonstrated this property by means of a priori
“domain of dependence” inequalities for solutions of initial-boundary
value problems for Maxwell’s equations and second order hyperbolic
equations and used the inequalities to prove existence, uniqueness
and regularity theorems for these problems. In this announcement
the results are extended to the most general systems of linear partial
differential equations that admit an energy integral, the symmetric
hyperbolic systems of K. O. Friedrichs [1].

The systems have the form

aug I 3%5
(11) Eaﬁ(x) E‘ = Aaﬁ(x) —6_0; + Baﬂ(x)uﬂ +fa(xs t) (a =12---, m‘):

where E,s, A4tg and B,g are real-valued functions of x = (x1, %z, * + =, %,)
ER" and ug=wus(x, t) and f, are real-valued functions of x and tE R
The summation convention is used; i.e., repeated indices 7 and 8 are
summed over their ranges (1<i=<#n, 1=<8=m). System (1.1) may
also be written in matrix notation

oun . ou
E—= Ai—+ Bu+f,
ot ax.-
where E=(E.3), Ai=(A%) and B=(B.s) are mXm matrices and
u=(uq) and f=(f.) are m X1 (column) matrices.
A system (1.1) is symmetric hyperbolicif Eand 4 (:=1,2, - + + , %)

are symmetric and E is positive definite. The form n=4E.su.us is

interpreted as an “energy density” (energy per unit volume). The

forms Z;= —4}ALsu.us are interpreted as the components of a

“Poynting vector” describing the flow of power (energy per unit area

per unit time). They are related by the “conservation of energy law”
¢

aff

o 92; 1 )
— Uathg + folha.

3
—— = —( Bus + Bga —
at+ax,~ 2( s+ By

+

1 Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No. DA-11-022-ORD-2059.

149



150 C. H. WILCOX [January

The energy per unit time entering a domain QCR" through its
boundary 9Q is

(1.2) f ZindS = VNS (n; = normal vector on %)
29 ag

where v;=2,;/7. Thus, v; may be interpreted as a “velocity” of energy
flow, which suggests that the speed with which energy propagates in
Q is bounded above by

— Aig()Euboms
Eop (x) £.8s

where the supremum is over x €Q, £€ R™and unit vectors #; (nn;=1).
This property of ¢ is verified below (§3) by the domain of dependence
inequality.

This announcement deals with initial-boundary value problems for
(1.1) in domains {, subject to dissipative, local boundary conditions
on 9. Precise definitions of the boundary conditions are given in §2.
The domain of dependence inequality is formulated and proved in §3.
Its application to existence, uniqueness, and regularity theorems for
initial-boundary value problems, together with complete proofs of all
the results and their application to particular systems, will be given
elsewhere (see [5]).

Throughout this paper, Q denotes an arbitrary domain (open con-
nected set) in R*, and E.s(x), A%s(x) and B.s(x) are assumed to be
defined (almost everywhere) in @ and to satisfy the conditions

1.3) ¢ = su

(1.4) Eup(2) = Epals), Au(x) = Apalx), Bus(x) and 9 Azs(x)/us

(which is defined as a distribution) are bounded, Lebesgue-measura-
ble functions in 2, and
(1.5) There exists a positive constant E° such that

Eup(%)tals = E%.8.  forx € Q and £ € R™
2. Boundary conditions. If ¢ =(¢.) € Cy(Q) then

i Odyg 1 aA:;g
APl = Aep—+ —
(4¢) g 0x; + 2 Ox;

¢ﬁ (a=1’2,...,m)

defines an operator 4: C3(Q)—Ly(Q), and A+, the formal adjoint of
A, equals —A4. This suggests the
DEFINITION. If % is in L.(R), then we say that Au exists and is
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equal to v in L,(Q) provided that
f ol AD)ad + f vaadz =0 for all ¢ & Co(9).
a 0

The space Ly(4; Q)= {u: u and Au are in Ly(Q)} is a separable
Hilbert space with respect to the scalar product

(% v) 1yca;0) = fn{uava -+ (Au)a(Av),}dx.

In classical theory, the set of functions # which satisfy a linear
homogeneous boundary condition on dQ and have Au€ Ly(Q) form
a linear space containing Cy(Q2). This suggests the

DEFINITION. A boundary condition I for 4 is a closed linear sub-
space I' of Ly(4; Q) such that C3(Q)CT.

Each boundary condition T for 4 determines an “adjoint” bound-
ary condition I'* for A defined by

T* = Ly(4; 9 N {v: f {ua(Av)a + (Au)a'ua}dx = Oforallu & I‘} .
Q

It follows that (I'*)*=T. Thus, boundary conditions for 4 occur in
adjoint pairs.

DEerINITION. T is a dissipative boundary condition for 4 provided
that

f e(An)edx = 0 forallu € I
Q

This concept is equivalent to that of a dissipative operator due to
R. S. Phillips [2]; see [5].

DEerINITION. T' is a local boundary condition for 4 provided that
¢uET whenever ¢ & Cy(R") and #ET.

Examples of local, dissipative boundary conditions are provided by
the classical systems of acoustics, electromagnetics and elasticity.
With each is associated a pair of “natural” boundary conditions, cor-
responding to hard and soft boundaries in acoustics, perfect electrical
and magnetic conductors in electromagnetics, and fixed and free
boundaries in elasticity; see [5] where this is verified and a class of
systems and boundary conditions generalizing these is described.

3. The domain of dependence inequality. Each boundary condition
T for 4 is a closed subspace of Ly(4; 2). Hence, I is a separable Hil-
bert spacerelative to the scalar product of Ly(4;Q). If I= {¢:0<t< T}
then the space
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F = Ly(I; T) N Ly(I; Lo(Q))

(see [4, §2] for definitions) defines a class of functions % =u(x, t) for
which

ou 7 1 04¢
E—, A4¢ = Au — — —— u and Bu
at 9x; 2 %

exist in Ly(Q), Q=QXI, and u satisfies the boundary condition
T (u(t) ET for almost every t&I). The domain of dependence inequal-
ity is concerned with the related space F° for which E(dx/d¢), etc.,
are in L*°(Q). To describe it let

Ivox = I' N {u: uis equivalent to zero outside a bounded set K C @},
and

loe

Ploa= Lz (A,Q)
N {u: f {#a(Av)a + (AU)ava}dx = 0 foralls € (I‘*)"°*}
h

and define

Fle = {u:u € L(I; Ly(4; K N Q)) N LY(I; Ly(K N Q)) for each
bounded measurable set K C R*, and u(f) € ' for al-
most all ¢t € I}.

THEOREM (DOMAIN OF DEPENDENCE INEQUALITY). Let T' be a local,
dissipative boundary condition for A. Then the speed c defined by (1.3)
is finite and every u & F° satisfies

f Eogttal Tyus(T)dx
20,0
@3.1) ©Asee

s T [f E 5u,(0)us(0)dx + 2 e"“fauadxdt]
2N 8 (2% a+cT)

QNC(29,a)

where

ou 1 94
f=E——Au—(B-= «,
ot 2 c’)x,-

S#% a) = {x: | — 2°| < a} and
C@@%a) = {(x,0): |z —2a®| Sa+e(T—1),0=5t=<T}.

The constant k depends on n and the bounds for the coefficients only.
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Proor. The finiteness of ¢ follows from (1.4) and (1.5). The proof
is omitted. Also, only the special case B=434%/dx; is treated. To
prove (3.1), take 6 >0 and let Ys & Cy’ (R?) have the properties y;s(7) =0
for 729, Ys(r) =1 for 7= —8, and Y}(r) <0 everywhere (so 0=y,(r)
=1 everywhere). Put ¢(x, £) =y:s(r), 7= ]x—x"] —a—c(T—t). Then
¢ ECy (0) for & sufficiently small, and ¢ tends to the characteristic
function of C(x°, a) when 6—0-.

Let & Floo, define f=E(du/dt) — Au and consider

o
(3.2) f fattabdudt = f SttaEug — dxdt — f btta( At)adxdt = I) — I,.
Q Q ot Q

Integration by parts with respect to ¢ gives [4, Theorem 2.3]

1 T 1 ¢
3.3 IL=— f ¢Eaﬁuau,g:l dx — — f (Eagtharg) — dxdt.

2Jg 0 2Jg ot
Next, v/ (¢(+, £)) EC3(R") for each t&1I, and u(-, £) ET° for almost

every t& 1. Hence, v/ (¢(+, t))u(-, t) ET because I is a local boundary
condition for A. Thus, since I' is dissipative for 4,

02 [ V(6e, Dnl, DAV Bl D), D)
e for almost all t & I.
Now, (AYu)a=yY(Au)a+ ALs(@Y/0x;)us, whence (3.4) may be written

(3.4)

ng¢m0m@0MM%MJx
Q

0V (p(x,2))
0x;

+ | V(e(x, b)) A optia(z, yug(x, t)dx (almost allt & I).
Q

(]

Integrating over ¢& I and using

Ve 1 9¢
Vot 2
ax.- 2 ax.-
gives
1 ; a
(3.5) 0=1,+ ——f A apthatis ¢ dxdt.
2Jg Xy

Combining (3.5) and (3.3) with (3.2) gives

1 T
f fattapdadt = — f Eaﬂuauﬁd{l dx
2 Jg 0

3.6) °
1 00 . o
- — Eaguauﬁ —_— = A,,gu.,ug dxdt.
2 Q ot 6x.~
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But
9¢
3; = \03’ <T)C;
a¢ 0 0
ryele Vi@ — )/l —x | = ¢i()n where nm; = 1.
Xi

Hence, the integrand in the last integral is

3.7) Ui (r) (Bapthatisc — Austiatigns) < 0,

since ¥{ (7) £0 and E.g(x)E.Eec— Abp(x)Eafsni =0 for all xEQ, EER™
and #; with n;=1, by the definition of ¢. Combining (3.6) and (3.7)
gives the estimate

1
f ot 2 - f EetoT) (D)D)
3.9)

1
- 7 anagua(O) u5(0)¢(0)dx .

Finally, when 6—0, ¢ tends boundedly to the characteristic function
for C(x° a). Hence, passage to the limit in (3.8) gives (3.1) with
k=0, which completes the proof for the case B=%434°/3x:. In the
general case, a simple variant of this argument gives (3.1) with a
nonzero % (cf. [5, Theorem 6.1]).
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