THE DIMENSION OF THE SUPPORT OF A RANDOM DISTRIBUTION FUNCTION

BY J. R. KINNEY AND T. S. PITCHER
Communicated by Michel Loève, August 21, 1963

In their paper Random distribution functions (Bull. Amer. Math. Soc. 69 (1963), 548-551) L. E. Dubins and D. A. Freedman defined a random distribution function F associated with a probability measure μ on the unit square S whose values are distribution functions on [0,1]. To choose a value F_{ω} of F they proceed as follows: Points $P(n, j)$ of S are defined inductively for all n and $j=0, \cdots, 2^{n}$ by setting $P(0,0)=(0,0), P(0,1)=(1,1), P(n+1,2 j)=P(n, j)$ and $P(n+1,2 j+1)$ equal to the image under the unique affine transformation carrying S onto the rectangle $R(P(n, j), P(n, j+1))$ formed by the vertical and horizontal lines through $P(n, j)$ and $P(n, j+1)$ of a point $P^{*}(n+1,2 j+1)=\left(x^{*}(n, 2 j+1), y^{*}(n, 2 j+1)\right)$ chosen according to the distribution μ independently of the previous choices. They showed that $\bigcap_{n=1}^{\infty} \cup_{j=0}^{2^{n}} R(P(n, j), P(n, j+1))$ is the graph of a continuous monotone function $F_{\omega}(x)$ increasing from 0 to 1 on $[0,1]$, that is, a distribution function defining a measure $\widetilde{F}_{\omega}(E)$ $=\int_{E} d F_{\omega}(x)$ on measurable $E \subset[0,1]$. The inverse of $F_{\omega}(x)$ is also a continuous everywhere increasing function which we call $G_{\omega}(y)$ with corresponding measure $\widetilde{G}_{\omega}(E)$. Let

$$
\begin{aligned}
I(n, j) & =[x(n, j-1), x(n, j)] \\
J(n, j) & =[y(n, j-1), y(n, j)]
\end{aligned}
$$

and

$$
I(n, x)=I(n, j), J(n, x)=J(n, j) \text { for that } j \text { for which } x \in I(n, j)
$$

$I(n, y)$ and $J(n, y)$ are defined similarly. Let $I^{*}(n, 2 j+\epsilon)$ $=\left[0, x^{*}(n, 2 j+1)\right]$ or $\left[x^{*}(n, 2 j+1), 1\right]$ and $J^{*}(n, 2 j+\epsilon)$ $=\left[0, y^{*}(n, 2 j+1)\right]$ or $\left[y^{*}(n, 2 j+1), 1\right]$ according as ϵ equals 0 or 1 . We shall write $|I|$ for the length of the interval I, and $h(a, b)$ for the function on S given by $h(a, b)=a \log b+(1-a) \log _{2}(1-b)$. All logarithms are taken to the base 2 . For any function $k(x, y)$ on S we set

$$
E_{\mu}(k(x, y))=\int_{0}^{1} \int_{0}^{1} k(x, y) d \mu(x, y)
$$

and

$$
\sigma_{\mu}^{2}(k(x, y))=E_{\mu}\left(\left[k(x, y)-E_{\mu}(k(x, y))\right]^{2}\right) .
$$

Theorem 1. (a) If $\sigma_{\mu}(h(y, x))<\infty$ then

$$
\lim _{n \rightarrow \infty} \frac{\log |I(n, x)|}{n}=E_{\mu}(h(y, x))
$$

almost everywhere $\left(\widetilde{F}_{\omega}\right)$ for almost all ω.
(b) If $\sigma_{\mu}(h(y, y))<\infty$ then

$$
\lim _{n \rightarrow \infty} \frac{\log |J(n, x)|}{n}=E_{\mu}(h(y, y))
$$

almost everywhere $\left(\tilde{F}_{\omega}\right)$ for almost all ω.
(c) If $\sigma_{\mu}(h(x, x))<\infty$ then

$$
\lim _{n \rightarrow \infty} \frac{\log |I(n, y)|}{n}=E_{\mu}(h(x, x))
$$

almost everywhere $\left(\tilde{G}_{\omega}\right)$ for almost all ω.
(d) If $\sigma_{\mu}(h(x, y))<\infty$ then

$$
\lim _{n \rightarrow \infty} \frac{\log |J(n, y)|}{n}=E_{\mu}(h(x, y))
$$

almost everywhere $\left(\tilde{G}_{\omega}\right)$ for almost every ω.
In the proof we will need the following law of large numbers for martingales.

Lemma. If f_{n} is F_{n}-measurable, where F_{n} is an increasing sequence of σ-fields, $E\left(\left|f_{n}\right|\right)<\infty, E\left(\left|f_{n}\right|^{2}\right)=\sigma_{n}^{2}$ with $\sum_{n=1}^{\infty} \sigma_{n}^{2} / n^{2}<\infty$, and if $E\left(f_{n} \mid F_{n-1}\right)=0$ for all n then $\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} f_{j}=0$ almost everywhere.

Proof. $S_{n}=\sum_{j=1}^{n} f_{j} / j$ is a martingale, convergent to some limit Z since $E\left(S_{n}^{2}\right) \leqq \sum_{j=1}^{\infty} \sigma_{j}^{2} / j^{2}$ for all n. Hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f_{j} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} j\left(S_{j}-S_{j-1}\right)=\lim _{n \rightarrow \infty}\left(S_{n}-\frac{1}{n} \sum_{j=1}^{n-1} S_{j}\right) \\
& =Z-Z=0
\end{aligned}
$$

with probability one.
Proof of Theorem 1. The proofs of all sections of the theorem are the same so we confine ourselves to the first. Since

$$
\frac{1}{n} \log |I(n, x)|=\frac{1}{n} \sum_{k=1}^{n} \log \left|I^{*}(k, x)\right|
$$

the result will follow from the preceding lemma if we can show that $f_{k}=\log \left|I^{*}(k, x)\right|-E_{\mu}(h(y, x))$ satisfies $E_{Q}\left(f_{k} \mid F_{k-1}\right)=0$ and $E_{Q}\left(f_{k}^{2}\right)$
$=\sigma_{\mu}^{2}(h(y, x))$ where F_{k} is the field generated by the $\left|I^{*}(l, x)\right|$ for $l \leqq k$ and Q is the measure on $[0,1] x \Omega$ defined by $\int k(x, \omega) d Q$ $=E_{\omega}\left(\int_{0}^{1} k(x, \omega) d F_{\omega}(x)\right)$. Any F_{k-1} measurable function has the form $g(x, \omega)=\sum_{j=1}^{2^{k-1}} g_{j} x_{j}(x, \omega)$ where $x_{j}(x, \omega)$ is 1 or 0 depending on whether x is in $I(k-1, j)$ or not so
$E_{Q}\left(g f_{k}\right)=E_{\omega}\left(\sum_{j=1}^{2^{k-1}} g_{j} \int_{I(k-1, j)}\left(\log \left|I^{*}(k, u)\right|-E_{\mu}(h(y, x))\right) d F_{\omega}(u)\right)=0$
which shows that $E_{Q}\left(f_{k} \mid F_{k-1}\right)=0$. The verification that $E_{Q}\left(f_{k}^{2}\right)$ $=\sigma_{\mu}^{2}(h(y, x))$ is straightforward.

Let $C_{\mu}=\left\{I_{j}\right\}$ be a set of intervals covering E with $\max _{j}\left|I_{j}\right| \leqq \mu$. The α-dimensional measure of E is

$$
\Gamma_{\alpha}(E)=\lim _{\mu \rightarrow 0} \underset{\substack{C_{\mu}}}{\text { g.l.b. }} \sum_{I_{i} \in C_{\mu}}\left|I_{j}\right|^{\alpha}
$$

The Hausdorff-Besicovitch dimension of E is

$$
\operatorname{dim} E=\inf \left(\beta \mid \Gamma_{\beta}(E)=0\right)=\sup \left(\beta \mid \Gamma_{\beta}(E)=\infty\right)
$$

Theorem 2. Under the hypotheses of Theorem 1, for almost all ω, there exist sets K_{ω}, L_{ω}, with $\widetilde{F}_{\omega}\left(K_{\omega}\right)=\widetilde{G}_{\omega}\left(L_{\omega}\right)=1$, such that for any sets A and B with $\tilde{F}_{\omega}(A)>0$ and $\tilde{G}_{\omega}(B)>0$ we have

$$
\operatorname{dim}\left(K_{\omega} \cap A\right)=E_{\mu}\{h(y, y)\} / E_{\mu}\{h(y, x)\}
$$

and

$$
\operatorname{dim}\left(L_{\omega} \cap B\right)=E_{\mu}\{h(x, x)\} / E_{\mu}\{h(x, y)\}
$$

Proof. The proofs of the two statements are identical so we will prove only the first. Call the right-hand side of the first equation α. We choose an ω in none of the exceptional sets of the first theorem. Then from the first two conclusions of the first theorem, there is a set K_{ω} with $\tilde{F}_{\omega}\left(K_{\omega}\right)=1$, such that $|J(n, x)|=|I(n, x)|^{\alpha+O(1)}$ for all $x \in K_{\omega}$. For each x in $K_{(\omega)}$ we choose that $I(n, x)$ with smallest n such that $|I(n, x)|<\mu$ and $|J(n, x)|>|I(n, x)|^{\alpha+} \epsilon$. For $x_{1}, x_{2} \in I(n, x)$ the choice occurs at the same time so the $I(n, x)$ are disjoint and countable and cover K_{ω}. Hence

$$
1=\int_{U_{I(n, x)}} d F_{\omega}(x)=\sum_{I(n, x)}|J(n, x)| \geqq \sum|I(n, x)|^{\alpha+\epsilon}
$$

so $\Gamma_{\alpha+\epsilon}\left(K_{\omega}\right) \leqq 1$, for every $\epsilon>0$, and hence $\operatorname{dim} K_{\omega} \leqq \alpha$. Let
$C\left(\epsilon_{1}, \epsilon_{2}\right)=\left[x| | J(n, x)\left|>|I(n, x)|^{\alpha-\epsilon_{1}}\right.\right.$ or $\left.| I(n, x) \mid<2^{n\left[E \mu(h(y, x)\}-\epsilon_{2}\right]}\right]$
for infinitely many n. Let $C_{\mu}\left(\epsilon_{1}, \epsilon_{2}\right)$ be the union of the intervals $I^{*}(n, x)$ covering $C\left(\epsilon_{1}, \epsilon_{2}\right)$ where for $x \in C\left(\epsilon_{1}, \epsilon_{2}\right) n$ is the smallest n for which the conditions of $C\left(\epsilon_{1}, \epsilon_{2}\right)$ are satisfied with $\left|I^{*}(n, x)\right| \leqq \mu$. Since $\bigcap_{\mu \rightarrow 0} C_{\mu}\left(\epsilon_{1}, \epsilon_{2}\right)=C\left(\epsilon_{1}, \epsilon_{2}\right), \lim _{\mu \rightarrow 0} \widetilde{F}_{\omega}\left(C_{\mu}\left(\epsilon_{1}, \epsilon_{2}\right)\right)=0$. Suppose $\widetilde{F}_{\omega}(A)$ $=2 s$. Take μ so small that $\widetilde{F}_{\omega}\left(C_{\mu}\left(\epsilon_{1}, \epsilon_{2}\right)\right)<s$, let $A^{*}=A \cap c\left(C_{\mu}\left(\epsilon_{1}, \epsilon_{2}\right)\right)$ $\cap K_{\omega}$ where c indicates complimentation, and set $M(x)$ $=\tilde{F}\left(A^{*} \cap[0, x]\right) . M(x)$ is a monotone, continuous function, $M(1)>s$, and $M(x+h)-M(x-h)<(2 h)^{\alpha-\epsilon_{3}}$, where ϵ_{3} depends on the choice of ϵ_{1} and ϵ_{2}. This happens since $M(x)$ increases only on $I(n, j)$ which fail to lie in $C_{\mu}\left(\epsilon_{1}, \epsilon_{2}\right)$. Hence, if $C_{\mu}=\left(I_{n}\right)$ is a covering of A^{*} with $\left|I_{n}\right|<\mu$ then

$$
s \leqq \int_{A^{*}} d M(x)=\sum_{n} \int_{I_{n}} d M(x) \leqq \sum\left|I_{n}\right|^{\alpha-\epsilon_{3}}
$$

Hence $\Gamma_{\alpha-\epsilon_{1}}\left(A^{*}\right)>s$. By adjusting ϵ_{1} and ϵ_{2}, we can choose any $\epsilon_{3}>0$ so $\operatorname{dim} A^{*} \geqq \alpha$. Hence, with the previous inequality we have

$$
\alpha \leqq \operatorname{dim} A^{*} \leqq \operatorname{dim} A \cap K_{\omega} \leqq \operatorname{dim} K_{\omega} \leqq \alpha
$$

Lincoln Laboratory ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Operated with support from the U. S. Army, Navy and Air Force.

