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symmetric space V (irreducible or not) is again Hermitian symmetric 
and is isomorphic to V. 

PROOF. Since Hl(V, 0)=O [2], we see that the set of points tÇî.B 
for which Vt is isomorphic to V is an open set in B [3 ] ; it is also 
closed by Theorem 2. 
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1. Introduction. Let f(t) be a Lebesgue-integrable function in (0, R) 
for every positive R. We denote by 

J P(t) = P ƒ(' - u)k(pu)du (t à 0) 
«J 0 

a general singular integral with parameter p > 0 and kernel k having 
the following property (P): k(u)^0 in 0<u< 00, &£L(0, co), and 
fok(u)du = l. 

If we restrict the class of functions ƒ(t) such that e^ ' /GL^O, 00), 
l^p< 00, for every c > 0 , and if k satisfies (P), then the following 
statements hold; 

(i) Jp(t) exists as a function of t almost everywhere, e~etJp 

ELp(0, 00) for every c > 0 , and \\e-ctJp\\ vo,«o^||*~c!f|UP(o,«,)î 
(ii) l i m P Î O O | | ^ { / - / p } | | p = 0. 
Furthermore, we denote by 

ƒ» 00 

e-"f(t)dt (s=*a + ir, Re s > 0) 
0 

the Laplace-transformation of a function ƒ belonging to one of the 
classes described above, and the Laplace-Stieltjes-transform of a 
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function h(f) locally of bounded variation at each t ^ 0 with 
Joe~et\dh(t)\ < °° for every c > 0 by 

ƒ» 00 

e-^dhif) ( R e * > 0). 

o 
Some fundamental hypotheses upon the kernel k are needed to 

prove the approximation theorems stated below. Let % (s) (Re s^O) 
be the Laplace-transform of k: At first, 

(1.1) lim (s/p)-y[l - Hs/p)] = A (Re s > 0) 
P Î <» 

should exist for some real 0 < 7 â l , where A is a positive finite con
stant; secondly, there exists a normalized function Q(u) of bounded 
variation in [0, oo] with (?(<*>) = 1 such that 

(1.2) A~*(s/p)-y[l - HS/P)] = Q(S/P) ( R e ^ 0 ) ; 

and thirdly, let there be a qE:L(0, oo), f£q(u)du= 1, and 

(1.3) A-i(s/p)-y[l - HS/P)] = q(s/p) (Re 5 ^ 0). 

I t may be mentioned here that the conditions (1.2) and (1.3), 
respectively, imply (1.1), but the inverse does not seem to hold. More
over, if the kernel k is not positive, then the constant 7 need not be 
bounded by one. 

2. Approximation theorems. 

THEOREM 1. Let e~cif, e~ctlGL(0, oo) for every c > 0 , let k satisfy 
(P), and let (1.1) hold for some real 7 ( 0 < 7 ^ 1 ) . 

(i) Then | |e-cf{p^(/~/p)~/}||Ll(o,oo) = ö(l) ( p î 00) implies 

Asyf(s) = l(s) (Re s > 0) 

or 

1 f* (t - u)^1 

f® ^ ~A I — ^ ~ \ — K^)àu a.e. 
A J 0 T(7) 

(ii) If || e~ct{f—Jp} ll̂ co.oo) = 0(p-7) (p Î 00), then there exists a func
tion F(t) locally of bounded variation atfèzO with f£erct\ dF(t) \ < 00 for 
every c>0 such that 

(2.1) Asi(s) = F(s) ( R e * > 0 ) . 

SKETCH OF PROOF. As (i) can readily be shown, we will restrict 
ourselves to the proof of (ii), Clearly, 
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[1 - k(s/p)]f(s) = f Y " { / ( Ô - JP{t)}dt (Re s > 0), 
J o 

and if we define 

I r c+iT/ \ T\\ 

ST(0 - — J (l - - ^ r j ^ I i - *(VP)1/W* 

(5 = £ + ir, c > 0), 

then with the aid of the above equation it can be rewritten as 

2 r 0 0 sin2 {T(t - u)/2\ , 

irTJo \t ~~ ^) 2 

Now, the large O-approximation of ƒ by JP gives 

||er<tfr||Ll(^ifl0) â | | ^ { / - /p}|Ul(o.w) = O(p^) (P Î 00) 

for all r ^ O , and using the condition (1.1) and Lebesgue's dominated 
convergence theorem we have 

1 rc+iT/ \r\\ 
— : I ( 1 - l—l-)e'*Apfo)ds » lim p%Sr(0, 
2iriJ c-iT \ T / PÎ « 

finally, with Fatou's lemma 

I r c+iT/ \ r \ \ 
r* — : I ( 1 - — - ) e**Asr}(s)ds 

2iri J c-iT \ T / i/i(—00,00) 

g liminf p%-c<Sr|Ul(-oo,oo) = 0(1) 
PÎ » 

for all T â O . Evidently the assumptions of the theorem and (1.1) give 
tha t J Astf(s) I is uniformly bounded in R e s ^ o > 0 . Now, using a 
representation theorem for Laplace-transforms [ l ] , this implies the 
existence of a function F(t) such that (2.1) is valid. 

The condition (2.1) defines a certain class K of functions/, and 
Theorem 1 shows, if there exists a constant 7 such that (1.1) holds, 
and if \\e-ct{f-JP}\\ L1(o,oo) = 0(p ?), then fÇ.K. The next theorem 
now shows that the inverse holds too. 

THEOREM 2. Let e~ctfCzL(0, <*>) for every c > 0 , let k satisfy (P), and 
let the relation (1.2) be satisfied for some 0 <y S1. Then the assumption 
(2.1) implies \\e-ct{f-JP}\\Ll(o,oo)^0(p-y) (p Î 00). 

If the two foregoing theorems hold, we say the singular integral Jp 

is said to be saturated with order 0(p~7), and the functions ƒ yielding 
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(2.1) define the saturation class of Jp. I t was J. Favard [5] who intro
duced this terminology in approximation theory, and one of the 
authors [2 ; 3 ] first made use of Fourier-transform methods to deter
mine the saturation classes of singular integrals which are convolu
tion integrals connected with the Fourier-transform. This question 
was independently but a little later treated by G. Sunouchi [ô] too. 
Now in this paper general singular integrals are discussed which are 
classical convolution integrals connected with the Laplace-transform. 
Although there are connections between the Fourier- and Laplace-
transform methods, it may be mentioned that the special properties 
and peculiar structure of the Laplace-transform play an important 
role in the proofs and the formulations of the stated theorems. 

In the space Lp(fi, °°), 1 <Ĉ> <C °°, an equivalent theorem holds too. 

THEOREM 3. Let k satisfy (P), and let the condition (1.3) exist f or 
some constant y ( 0 < 7 ^ 1 ) . A necessary and sufficient condition that 
the singular integral Jp(t)=pfQf(t — u)k(pu)du(p>0) shall be saturated 
with order 0(p~y) for functions e~ctfÇ:Lp(Q, oo), 1 < £ < O O , c > 0 , is 
that there exists a function e~ctF(E:Lp(Oy oo), c > 0 , such that 

Asrf(s) = F(s) (Re s > 0) 

or 
l r* (t - u)y~l 

f® = ~7 I — ^ 7 ^ — F(u)du ax. 
A J o T(y) 

3. Application. As an application we will consider a boundary 
value problem of heat conduction of a semi-infinite rod (x^O). 
U(x, t) is the temperature in the rod at time £>0, which is described 
by the equations 

dU(x, t) d2U(x, t) 
— ^ - = , ' (*> ' > 0) ; Hm UQc, t) = Uo(t) (t > 0). 

dt dx2 a|0 

Among others, G. Doetsch [4, Bd. I l l ] has shown that the solution is 
given by 

U(x, t) = — Uo(f - «0 - ï ~ ~ du (*, t > 0), 
2VirJo uzl2 

where ?7o is a Lebesgue-integrable function, and that the solution is 
unique, if the convergence of U(x, t) to Uo(t) is defined by the norm-
convergence of the given function space. 

U(x, t) is a singular convolution integral with parameter p = 1/x2 > 0 
and kernel 
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1 exp(—l/4w) 

2V* u*i* 

I t is easy to see that the kernel k has property (P) and its Laplace-
transform l ( s )=exp( — \/s) satisfies the conditions (1.1), (1.2), and 
(1.3) for 7 = 1/2 with 4 = 1. 

If we restrict the temperature at the origin Uo(t) such that e^etUo 
£ L P ( 0 , oo), \<p< oo, c > 0 , for instance, then making use of Theo
rem 3 we have : 

(i) \\e-ct{Uo(t)-U(x,t)}\\Lp«i,oo) = o(x) (c>0,x| 0) implies £/0(0 = 0 
a.e.; 

(ii) ||e~ct { Uo(t) - U(x, t)} lUpCo.oo) = 0(x) (c> 0, x I 0) guarantees that 
the flux of heat at the boundary Wo(t) exists a.e., e~cW0G£p(0, oo) 
for every c>0, and 

VsÛo(s) = l^oW ( R e * > 0) 

or, equivalently, 

Wo(u) 1 C* Wo(u) 
Uo(t) = — I — du a.e., 

V7T*/ 0 V * ~" W 

and vice versa. 
The complete proofs of these and further results as well as a de

tailed discussion will appear elsewhere (see [7]). 
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