A NOTE ON THE ADJOINT OF A PERTURBED OPERATOR

BY R. W. BEALS¹

Communicated by Felix Browder, October 18, 1963

Let X and Y be Banach spaces. By an operator from X to Y we mean a linear operator with domain $D(T) \subseteq X$ and range $R(T) \subseteq Y$. An operator T from X to Y is said to be a Fredholm operator if T is closed, the null space N(T) has finite dimension, and the range R(T)is closed and has finite codimension in Y. We denote by $\Phi(X, Y)$ the set of all Fredholm operators from X to Y. If $T \in \Phi(X, Y)$, the index of T is defined to be

$$\operatorname{ind}(T) = \dim(N(T)) - \operatorname{codim}(R(T)).$$

Suppose $T \in \Phi(X, Y)$. Since T is closed, the graph G(T) is a closed subspace of $X \times Y$. An operator C from X to Y is said to be *T*-compact if C is closable, $D(C) \supseteq D(T)$, and the mapping $(x, Tx) \rightarrow Cx$ is compact as an operator from G(T) into Y.

The following results are well known:

(1) If $T \in \Phi(X, Y)$ and C is T-compact, then $T + C \in \Phi(X, Y)$ and $\operatorname{ind}(T+C) = \operatorname{ind}(T)$. (See [2, Theorem 2.6].)

(2) If T is a closed operator from X to Y and D(T) is dense in X, then T is in $\Phi(X, Y)$ if and only if the adjoint operator T^* is in $\Phi(X^*, Y^*)$. If so, then $\operatorname{ind}(T^*) = -\operatorname{ind}(T)$. (For by [1, Theorem A], R(T) is closed if and only if $R(T^*)$ is closed. If so, then $\dim(N(T^*))$ $= \operatorname{codim}(R(T))$ and $\operatorname{codim}(R(T^*)) = \dim(N(T))$.)

LEMMA. Suppose $S \in \Phi(X, Y)$, $T \in \Phi(X, Y)$, and $S \subseteq T$. Then $ind(S) \leq ind(T)$, and equality holds if and only if S = T.

PROOF. If $S \subseteq T$, then $N(S) \subseteq N(T)$ and $R(S) \subseteq R(T)$, so the inequality is obvious. Equality implies N(S) = N(T) and R(S) = R(T), so S = T.

PROPOSITION. Suppose $T \in \Phi(X, Y)$ and D(T) is dense in X. If C is an operator from X to Y such that C is T-compact and C^{*} is T^{*}-compact, then $T^*+C^*=(T+C)^*$.

PROOF. From (1) and (2) it follows that $T^*+C^* \in \Phi(X^*, Y^*)$ and $(T+C)^* \in \Phi(X^*, Y^*)$. Furthermore

$$\operatorname{ind}(T^* + C^*) = \operatorname{ind}(T^*) = -\operatorname{ind}(T)$$

= $-\operatorname{ind}(T + C) = \operatorname{ind}((T + C)^*).$

¹ National Science Foundation Graduate Fellow.

It is obvious that $T^*+C^*\subseteq (T+C)^*$, and equality follows from the lemma.

REMARK. If C is T-compact, C^* need not be T^* -compact. In fact it can happen that $D(C^*) \cap D(T^*) = (0)$, and therefore $(T+C)^* \neq T^* + C^*$, even when T is the inverse of a positive definite compact Hermitian operator in a Hilbert space.

References

1. F. E. Browder, Functional analysis and partial differential equations. II, Math. Ann. 145 (1962), 81-226.

2. I. C. Gohberg and M. G. Krein, *The basic propositions on defect numbers, root numbers, and indices of linear operators*, Uspehi Mat. Nauk 12 (1957), 43-118; English transl., Amer. Math. Soc. Transl. (2) 13 (1960), 185-264.

YALE UNIVERSITY