RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

FINITE SECTION WIENER-HOPF EQUATIONS ON A COMPACT GROUP WITH ORDERED DUAL¹

BY I. I. HIRSCHMAN, JR.

Communicated by A. Zygmund, March 20, 1964

Let Θ be a compact Abelian topological group with dual Ξ on which there is given an order relation "<" compatible with the group structure. For $\xi \in \Xi$ and $\theta \in \Theta$ we denote by (ξ, θ) the value of the character ξ at θ . $d\theta$ denotes Haar measure on Θ so normalized that Θ has measure 1. A_0 is the class of those functions $f(\theta)$ of the form

$$f(\theta) = \sum_{\xi} f(\xi)(\xi, \theta)$$

for which $||f||_0$ is finite where

$$||f||_0 = \sum_{\xi} |f(\xi)|.$$

Note that

$$f(\xi) = \int_{\Theta} f(\theta)(-\xi, \theta) d\theta.$$

Definition 1. A Banach algebra A of complex functions on Θ is said to be of type S if:

- 1. $A \subset A_0$, and $||f||_0 \le ||f||$ for all $f \in A$;
- 2. $(\xi, \theta) \in A$ for every $\xi \in \Xi$, and finite linear combinations of (ξ, θ) 's are dense in A;
- 3. $f \in A$, $g \in A_0$ and $|g(\xi)| \le |f(\xi)|$ for all ξ implies $g \in A$ and $||g|| \le ||f||$.

Henceforth every algebra A considered will be of type S.

Let us introduce the following families of operators:

$$E^{+}(\eta)f\cdot(\theta) = \sum_{\xi \geq \eta} f(\xi)(\xi,\,\theta); \quad E^{-}(\eta)f\cdot(\theta) = \sum_{\xi \leq \eta} f(\xi)(\xi,\,\theta).$$

¹ Research supported in part by the United States National Science Foundation under Grant No. GP-2089.

It is apparent, using property 3 of Definition 1, that for all $\eta \in \mathbb{Z}$ $E^+(\eta)$ and $E^-(\eta)$ are linear operators on A (considered as a Banach space) of norm 1.

Let $c \in A$. We define a linear operator W_o^+ on $E^+(0)A$ by

$$W_{c}^{+}f = E^{+}(0)cf, \quad f \in E^{+}(0)A.$$

Similarly

$$W_{c}f = E(0)cf, \quad f \in E(0)A.$$

 W_c^+ and W_c^- are called the Wiener-Hopf operators associated with c. We shall say that $c \in WH(A)$ if both W_c^+ and W_c^- have bounded inverses. We next introduce finite section Wiener-Hopf operators. For $\eta \ge 0$ let

$$W_c^+(\eta)f = E^-(\eta)E^+(0)cf, \quad f \in E^-(\eta)E^+(0)A,$$

and

$$W_{c}^{-}(\eta)f = E^{+}(-\eta)E^{-}(0)cf, f \in E^{+}(-\eta)E^{-}(0)A.$$

 $W_c^+(\eta)$ and $W_c^-(\eta)$ are bounded linear operators on the Banach spaces $E^-(\eta)E^+(0)A$ and $E^+(-\eta)E^-(0)A$ respectively.

Our principal result is roughly that if "infinite section" Wiener-Hopf operators W_c^+ and W_c^- both have (bounded) inverses, then so do $W_c^+(\eta)$ and $W_c^-(\eta)$ if η is large enough. Before stating this precisely let us introduce some notation. For $f(\theta) \subseteq A$,

$$f(\theta) = \sum_{\xi} f(\xi)(\xi, \theta),$$

let

$$f^{\#}(\theta) = \sum_{\xi} |f(\xi)| (\xi, \theta).$$

It follows from 3 of Definition 1 that $f^{\#} \in A$, and $||f^{\#}|| = ||f||$. We will write

$$f^{\#} \prec g^{\#}$$

if f, $g \in A$ and if

$$|f(\xi)| \le |g(\xi)|$$
 for all $\xi \in \Xi$.

THEOREM 2. Let $c(\theta) \in WH(A)$. Then there exists $\eta_+ \ge 0$ in Ξ , and $C_+ = C_+^{\sharp}$ in A, such that if $\eta \ge \eta_+$ and if $f \in E^-(\eta)E^+(0)A$ then

a.
$$f^{\dagger} < \left[W_c^+(\eta)f\right]^{\dagger}C_+^{\dagger}$$

and if $\eta \ge \eta_+$ the range of $W_c^+(\eta)$ is $E^-(\eta)E^+(0)A$. This implies in particular that $W_c^+(\eta)^{-1}$ exists and

b.
$$||W_c^{\dagger}(\eta)^{-1}|| \le ||C_+^{\dagger}||$$
.

There is a similar result associated with $W_c^-(\eta)$.

Conclusion b. of Theorem 2 was proved by Baxter in [3] for the special case when Θ is the real numbers modulo 1, and Ξ is the additive group of integers, and when the algebra A is of Beurling-Gelfand type. Using his result Baxter obtained a very detailed and precise theory of Szegö polynomials on T. See [1] and [2], and also [4]. Using Theorem 2 we can extend this theory to the groups and algebras described above.

In conclusion I would like to express my indebtedness to and my admiration of Professor Baxter's work.

References

- 1. Glen Baxter, Polynomials defined by a difference system, J. Math. Anal. Appl. 2 (1961), 223-263.
- 2. ——, A convergence equivalence related to polynomials on the unit circle, Trans. Amer. Math. Soc. 99 (1961), 471–487.
- 3. ——, A norm inequality for a 'finite section' Wiener-Hopf equation, Illinois J. Math. 7 (1963), 97-103.
- 4. I. I. Hirschman, Jr., Finite sections of Wiener-Hopf equations and Szegö polynomials, J. Math. Anal. Appl. (to appear).

WASHINGTON UNIVERSITY