
i964] THEORY OF ORDINARY DIFFERENTIAL EQUATIONS 529 

BIBLIOGRAPHY 

1. J . Barta, Sulla risoluzione del problema di Dirichlet per il cerchio o per la sfera, 
Atti Acad. Naz. Lincei Mem. (6) 6 (1937), 783-793. 

2. , Bornes pour la solution du problème de Dirichlet, Bull. Soc. Roy. Sci. 
Liège 31 (1962), 15-21. 

3. —, Sur une certaine formule qui exprime des bornes pour la solution du 
problème de Dirichlet, Bull. Soc. Roy. Sci. Liège 31 (1962), 760-766. 

4. W. H. Malmheden, Eine neue Lösung des Dirichletschen Problems fur sphârische 
Bereiche, Kungl. Fysiogr. Sâllsk. i Lund Förh. 4 (1934), no. 17, 1-5. 

5. R. J. Duffin, A note on Poisson's integral, Quart. Appl. Math. 15 (1957), 109-
111. 

UNIVERSITY OF MINNESOTA 

A NOTE ON THE FUNDAMENTAL THEORY OF 
ORDINARY DIFFERENTIAL EQUATIONS 

BY GEORGE R. SELL1 

Communicated by H. Antosiewicz, February 19, 1964 

In this note we present some results on various problems connected 
with ordinary differential equations which do not necessarily satisfy 
a uniqueness condition. Using the concept of an integral funnel we 
are able to generalize the classical theorem on continuity with respect 
to initial conditions. This then leads to a reformulation of the prob­
lem of classifying the solutions of a given differential equation. That 
is, it is shown that every continuous vector field f(x) on W gives rise 
to a bicontinuous injection of W into a space of functions H, and 
consequently the problem of classifying solutions is equivalent to the 
problem of characterizing this family of bicontinuous injections. A 
detailed discussion, with proofs, will appear later. 

1. Introduction. Let us consider the differential equation 

(1) * ' = ƒ ( * ) 

where ƒ is defined and continuous on some open, connected set W in 
Rn, real w-space. We shall let PF*= "FFWJco} denote the one-point 
compactification of W. There is then at least one solution <£(£, /) of 
(1) through every point p(E.W with 4>(p, 0)=p. Moreover, every 
solution is defined on some maximal interval Jp where either Jp = R1 

or <j>(p, t)—>{co} as t—^bdy Jp. I t should be noted that since the solu­
tions of (1) may not be unique, the interval Jp depends not only on p 
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but also on the particular solution 0(£, /). 
Now define 

F(P) 0 ==^3>(0 == {%ÇzW: x = (j)(p, t) for some solution of (1) through p]. 

If no solution of (1) can be continued up to time /, then F(p, i)—0, 
the empty set. If A is any set in W, let 

F(A,t) = F A ( 0 = U F(p,t). 
peA 

The set F(A, R1) = öten1 F(At t) is called the integral funnel through 
A, and each set F(A, /) is said to be a section of the integral funnel. 

The problem of characterizing the sets F(p, t) and, more generally, 
F {A, t) form the heart of the (local) fundamental theory of ordinary 
differential equations. There are, of course, two aspects to this prob­
lem. First, what topological properties do the sections F(p, t) have 
and what topological properties of a given set A in W are inherited 
by the section F(A, t). The second aspect is the converse of the above; 
that is, given a set B in W, when is it the section of an integral funnel 
F(P,t)? 

Under the assumption that ƒ (x) satisfies a local Lipschitz condition 
on W or, more generally, that the solutions of (1) are unique, the 
first aspect of this problem has been solved. In this case, the mapping 
of p—>F(p, t) is a homeomorphism of A onto F(A, t) provided A is 
relatively compact in W and 11 | is sufficiently small. 

The converse question, even in the case where the solutions are 
unique, does not seem to be completely answered. We shall not con­
sider this aspect of the problem here. 

If the solutions of (1) are not unique, then the problem of char­
acterizing the sets F(p, t) and F(A, t) naturally becomes more diffi­
cult. The first results on this problem are due to H. Kneser [7] who 
proved in 1923 that for \t\ sufficiently small, each section F(p, t) 
is a continuum, that is, it is compact and connected. In the late 
1920's, Fukuhara [2], [3] showed that if q&dy F(p, r) for some r, 
then there is a solution <j>(p, t) of (1) which lies on bdy F(p, t) for all 
t between 0 and r and <f>(p, r) ~q. In 1932 Kamke [5] made a detailed 
investigation of the behavior of solutions of (1). He proved, among 
other things, that the sections F(p, t) had a type of continuity in p. 
(See corollary to Theorem 4.) More recently various people have at­
tempted an axiomatic approach to this problem. Of particular note is 
the work of Minkevic [8], [9], Barbasin [ l ] and Roxin [ l0] . 

Let d(x, y) denote the Euclidean metric on i?n, then \x\ = s/{d{xi x)) 
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is the norm of x. If A C.Rn let d(x, A) = inf {d(x, a) : aÇ^A }. For every 
€ > 0 and every ACRn, define 33(4, e) = {xGRn: d(x, A)<e} and 

2. Basic properties of integral funnels. Let (1) be given on an 
open, connected set W in Rn and let F (A, t) be the section of the 
integral funnel through A where AQW. The following properties 
are easily established : 

1. F(A,0)=A. 
2. If frèO, then F(A, t+r) = F(F(A, t), r ) . 
3. If tr < 0 , then H 4 , / + r ) C ^ U , 0 . T). 

LEMMA 1. Z ^ 4̂ &# a compact set in W and let e > 0 be given where 
©C4, €) CW. Then there is ana>0 such that F {A, t) C $&(A, e) for all 
* G ( - a , a ) . 

THEOREM 1. Let A be a compact set in W. Then there is an a>0 such 
that the section F(A, t) is compact f or every *£(—•#, a). 

If A is a compact subset of W, then by Zorn's lemma there is an 
interval I A which is maximal with respect to the property that the 
section F(A, t) is compact for every / £ 2 A . (li A— {p} we shall write 
I A as Ip.) I t is clear that for each compact set A in W, 0 is an interior 
point of I A* Also, because of Theorem 1, IA is open. 

3. General topological considerations. Since the sections Fp(t) of 
the integral funnel are compact subsets of Wy we can view Fp as a 
function mapping Ip into the compact subsets of W. Also, if A is 
compact in W, then FA is a mapping of I A into the compact subsets 
of W. 

Let K = K(W) denote the collection of all nonempty compact sub­
sets of W. We shall now define two topologies on K. The first, which 
we denote by 3, is defined in terms of a neighborhood basis for each 
point A £ i £ . Let A £ i £ and let e > 0 be given and define 

Sfl{A,e) = ( u G J f : B C 8 W , « ) ) . 

Following Wilder's development [ l l ] , this neighborhood system gen­
erates a topology 3 for K. I t is easily shown that the neighborhoods 
themselves are open sets in this topology. Consequently, the family 
{$ftC4, e)} of basic neighborhoods forms a basis for the topology. 

The second topology on K> which we denote by 5C, is the Hausdorff 
metric topology [4]. If B and A are in K, then we define 

P*(A,B) = mi{e:Be W(A, e)} 
and 



532 G. R. SELL [July 

p(A9B) = max(p*(il ,B),p*(5,i4)). 

p is a metric on K (the Hausdorff metric), and it generates the topology 
3C. Since (K, 5C) is a metric space, it is a normal Hausdorff space, or a 
r4-space, in the terminology of Kelley [ó]. However (X, 3) is a 7Y 
space, but it is not a TVspace. 

DEFINITION. Let X be any topological space and let g: X—>K be a 
function from X into i£. We shall say that g is continuous if it is con­
tinuous in the 3-topology on K. g is said to be Hausdorff-continuous if 
it is continuous in the 3C-topology on K. It is easy to check that 
Hausdorff-continuity implies continuity. 

4. The function space F. Let g be a continuous function from some 
interval DQ, which contains 0, into K, and let F denote the collection 
of all such continuous functions, where the domain DQ depends on the 
function g. Before giving F a topology we note the following facts. 

THEOREM 2. Let AÇ.K and let FA and IA be given as above. Then 
FA{t) is Hausdorff-continuous on IA, which implies that FAÇîF. 

THEOREM 3. Let gÇHF be defined on DQ and let J be a compact set in 
Dg. Then g(J) = \Jt<=j g(t) is a compact set in W. 

We now construct a topology on F by defining a neighborhood basis 
for each element of F. Let g, J and e be given where gÇîF, / is a com­
pact set in Dg and e is a positive number. First define 

8fe, J, €) - {h G F : / C Dh and h(t) G SSl{g{t), e) for all t G / } . 

Now define the neighborhood basis at g by 

2R(&/,€):= U 8 ( * , / , * ) . 
0<rç<c 

This generates a topology on F, which we denote by 9fïl. Furthermore, 
the sets H)?(g, / , e) are open in this topology, so they form a basis. 

I t is not hard to check that if 0 <rj<e, then 

8(g, ^> 1?) C 2R(S, / , e) C 8(g, / , e) 

and that these inclusions are proper. Furthermore, one can show that, 
in general, the sets 8(g, J, e) are not open in the topology 2HX. How­
ever, for Hausdorff-continuous functions we have: 

LEMMA 2. If g G F is Hausdorff-continuous, then 8(g, J , 0 is 0££w 
and, in fact, W(gf J, e)=8(g, J, e). 

5. Continuity with respect to initial conditions. There are two sub-
spaces of F which are of particular importance for the study of the 
solutions of (1). These are 
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K~ {g(EF: g(t) = FA(t) on IA for some A G K} 

and 

W = Î ^ G F : g(0 = Fp(0 on Iv for some >̂ G W}. 

There is then a natural mapping from K onto K, which we denote by 

(2a) G:A-*FA. 

The restriction of G to W (W is viewed as a subspace of K) defines 
another mapping H from W onto W, where 

(2b) H:p->FP. 

I t is clear that the mappings G and jfl are one-to-one and onto. Con­
sequently G"1 and H~l exist. 

The following theorem is the generalization of the classical con­
tinuity with respect to initial conditions. 

THEOREM 4. The mapping G is a homeomorphism between K and K, 
and H is a homeomorphism between W and W. Equivalently, G and H 
are bicontinuous injections of, respectively, K and W into F. 

As a corollary we have the following result, which is a generaliza­
tion of Kamke's theorem [5]. 

COROLLARY. Let AÇLK. and let J be a compact set in I A- For every 
€ > 0 there is a S>0 such that if gG93(A, S), then F(q, t) C$S(F(A, /), e) 
C®(F(A, J ) , e) for every tGJ. 

6. Comments on the Hausdorff metric. Since the functions FA for 
AÇiK are Hausdorff-continuous, one could have restricted the dis­
cussion to the subspace H of F consisting of all Hausdorff-continuous 
functions. The mappings G and H are then bicontinuous injections of, 
respectively, K and W into H, where the topology on H is generated 
by the neighborhood system {%Jl(g, J, É J H H } . 

I t is natural to ask whether one could use the Hausdorff metric p 
to define a different topology on H. For example, one could define 
a neighborhood basis for the function gÇ.H as follows: Let J be a 
compact set in D0 and let €>0, then define 

Ofe, / , e) = ihe H: sup p(h(t), g(f)) < e 
\ teJ 

This generates a topology on H, which we now denote by 0. Further­
more the sets >0(g, / , e) are open and thus form a basis for the topol-

• 
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ogy. If g £ H it is easily checked that £)(g, J*, e) C9)î(g, J, e)P\H and 
that this inclusion is proper. Furthermore, the mappings G~l and H~l 

are continuous in the Ö-topology. However, the mappings G and H 
are generally not continuous in the Ö-topology, as is seen in the 
following example: 

Let W=RX and let 

( Voc, if * £ 0, 
(3 ) * 1 - - ^ n 

x < 0. 

(V*, if 
r = < 

I 0, if 

If J = { / : 0 ^ * g l } , then for £ ^ 0 , sup tej p(FP(t), F 0 ( 0 ) è l / 4 . That 
is, if £ ^ 0 , then / ^ $ O ( F 0 , / , e) for any e, 0 < e < l / 4 . 

Actually the continuity of the mapping H in the Ö-topology on W 
is closely related to the uniqueness of solutions of (1), as is shown in 
the following theorem. 

THEOREM 5. (A) If the solutions of (1) are unique, then the mapping 
H: W—>W is continuous in the Ö-topology on W. 

(B) H is continuous in the ö-topology if and only if the ö-topology 
and the ïiïl-topology agree on W. 

(C) If H is continuous in the Ö-topology, then the extension G: (K, 3C) 
—>(X, ö) is continuous in the given topologies. 

It should be noted that Theorem 5 (A) is the classical statement 
of continuity with respect to initial conditions for solutions of (1). 

An interesting question, for which the answer is apparently not 
known, is whether the following is true: "H is continuous in the 
Ö-topology on W if and only if the solutions of (1) are unique." 

7. The classification problem. Theorem 4 now gives a new context 
for phrasing the problem: "What kind of sets are sections of integral 
funnels?" We have shown that every differential equation (1) gives 
rise to a bicontinuous injection G of K into H. The following question 
now arises: "Is every bicontinuous injection G of K into H generated 
by the integral funnels of some differential equation of the type (1) 
on WV' The following example gives a negative answer. 

Let T ¥ = ^ 1 a n d 

F(t) = r ^ + (sgn^)/2/4, i f ^ O , 
p U \{t*/4, ~ / 2 / 4 } , i f£ = 0. 

The mapping H: p-*Fp is a homeomorphism, but it is not generated 
by the integral funnels of a differential equation since F0(t) is not 
connected for /T^O, which is contrary to Kneser's theorem [7]. 
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