RECURRENT RANDOM WALKS WITH ARBITRARILY LARGE STEPS

BY L. A. SHEPP

Communicated by G. A. Hunt, February 10, 1964

Introduction. The random walk generated by the distribution function (d.f.), F, is the sequence $S_n = X_1 + \cdots + X_n$, of sums of independent and F-distributed random variables. If $P\{|S_n| < 1, i.o.\} = 1$, F is called recurrent.¹ If F is not recurrent, $P\{|S_n| \to \infty\} = 1$ [1], and F is called transient. This note contains a proof that there are recurrent distributions with arbitrarily large tails. This assertion was made without proof in [2], where it is shown that for convex distributions, such behavior cannot take place.

1. Comparing random walks. We shall prove the following theorem.

THEOREM. If $\epsilon = \epsilon(x)$ is defined for $x \ge 0$, and $\epsilon(x) \rightarrow 0$, as $x \rightarrow \infty$, then there is a recurrent distribution function F, for which, for some x_0 ,

(1.1)
$$1 - F(x) = F(-x) \ge \epsilon(x), \qquad x \ge x_0.$$

This result may be restated in the following way. For any d.f. G, there is a recurrent d.f. F, and a sample space W on which sequences $X_n = X_n(w), Y_n = Y_n(w), n = 1, 2, \cdots$, may be defined so that for each $w \in W$,

(1.2) $|Y_n(w)| < |X_n(w)|$, sign $Y_n(w) = sign X_n(w)$, $n = 1, 2, \cdots$,

where Y_n , $n = 1, 2, \dots$, are independently *G*-distributed, and X_n , $n = 1, 2, \dots$, are independently *F*-distributed. Considering *G* transient, we have

(1.3)
$$P\{ | Y_1 + \cdots + Y_n | \to \infty, | X_1 + \cdots + X_n | < 1, \text{ i.o.} \} = 1$$

We remark that F cannot be chosen convex. If F is (eventually) convex, and $1 - F(x) = F(-x) \ge 1 - G(x) = G(-x)$, where G is transient, then F is also transient [2].

The idea of the proof of the theorem is to move out the mass of G and bunch it up, leaving large gaps, so that the remaining steps somehow cancel themselves out.

2. Proof of the cancellation theorem. For symmetric F, the condition that F be recurrent is a tail condition [2], and may be stated

¹ i.o. or infinitely often here means for infinitely many $n = 1, 2, \cdots$.

in terms of the characteristic function, $\phi(z) = \int \cos xz \, dF(x)$, as

(2.1)
$$\int_0^1 (1-\phi(t))^{-1} dt = \infty.$$

Since any function ϵ of our theorem is majorized by a piecewise constant function, continuous except at integers, and decreasing to zero, we may restrict ourselves to functions of this type.

We shall prove the stronger assertion.

LEMMA. If $p_n > 0$, $n = 1, 2, \dots, \sum p_n < \infty$, and $0 < y_n \uparrow \infty$, are given, then

(2.2)
$$\int_0^1 (\sum p_n (1 - \cos x_n t))^{-1} dt = \infty,$$

for some $x_n \ge y_n$, $n = 1, 2, \cdots$.

Assuming the lemma, choose x_0 so that $\epsilon(x_0^-) \leq 1/2$, and set $p_n = \epsilon(y_n^-) - \epsilon(y_n^+)$, where y_n , $n = 1, 2, \cdots$, are the jumps of ϵ to the right of x_0 . We define F to have mass p_n at $\pm x_n$, $n = 1, 2, \cdots$, provided by the lemma. The remaining mass of F, $1 - 2\epsilon(x_0^-) = 1 - 2\sum p_n$ is placed at zero. As defined, F is symmetric, and

$$1 - F(x) = \sum_{x_n \ge x} p_n \ge \sum_{y_n \ge x} p_n \ge \epsilon(x),$$

for $x > x_0$. By (2.2), we have (2.1), and F is recurrent.

To prove the lemma, assume that $n_0=0 < n_1 < \cdots < n_k$ have already been defined (start at k=0), and that x_1, \cdots, x_{n_k} have been chosen so that $x_n \ge y_n$, $n=1, 2, \cdots, n_k$, and

(2.3)
$$\int_0^1 \left(\sum_{n \le n_k} p_n (1 - \cos x_n t) + 2 \sum_{n > n_k} p_n \right)^{-1} dt \ge k.$$

We shall show that it is possible to choose $n_{k+1} > n_k$ and $x_{n_k+1}, \dots, x_{n_{k+1}}$, so that $x_n \ge y_n$, $n_k < n \le n_{k+1}$, and so that (2.3) holds with k replaced by k+1. Having shown this, x_n are then inductively defined for all $n=1, 2, \dots$ and $x_n \ge y_n$. Moreover, for any k,

(2.4)
$$\int_{0}^{1} (\sum p_{n}(1 - \cos x_{n}t))^{-1}dt \\ \ge \int_{0}^{1} \left(\sum_{n \le n_{k}} p_{n}(1 - \cos x_{n}t) + 2\sum_{n > n_{k}} p_{n}\right)^{-1}dt,$$

and by (2.3), (2.2) follows.

We now show that $n_{k+1} = m$, and $x_{n_k+1} = x_{n_k+2} = \cdots = x_{n_{k+1}} = x$ can be defined, where $x \ge y_{n_{k+1}}$, and $m > n_k$. This is a consequence of the following assertion, where $a = n_k$ is fixed

(2.5)
$$\lim_{m \to \infty} \lim_{x \to \infty} \int_0^1 \left(\sum_{n \le a} p_n (1 - \cos x_n t) + \left(\sum_{n = a+1}^m p_n \right) (1 - \cos x t) + 2 \sum_{n > m} p_n \right)^{-1} dt = \infty$$

Since $\sum_{n \leq a} p_n (1 - \cos x_n t) \leq ct^2$ for some fixed c > 0, we find that (2.5) is a consequence of (2.6),

(2.6)
$$\lim_{\epsilon \to 0} \lim_{x \to \infty} \int_{0}^{2\pi} (t^{2} + 1 - \cos xt + \epsilon^{2})^{-1} dt = \infty$$

Writing $\int_0^{2\pi} = \sum_{n=1}^x \int_{2\pi(n-1) \le tx < 2\pi n}$, and using the fact that $1 - \cos r \le cr^2$, for some c > 0, we have only to show that

(2.7)
$$\lim_{\epsilon \to 0} \lim_{x \to \infty} x^{-1} \sum_{n=1}^{x} \int_{0}^{2\pi} (n^{2}x^{-2} + r^{2} + \epsilon^{2})^{-1} dr = \infty.$$

Noting that $a_1^2+a_2^2+a_3^2 \leq (a_1+a_2+a_3)^2$ for $a_i \geq 0$, i=1, 2, 3, and integrating, the sum in (2.7) is at least

(2.8)
$$x^{-1} \sum_{n=1}^{x} \int_{0}^{1} (nx^{-1} + r + \epsilon)^{-2} dr$$
$$= \sum_{n=1}^{x} x^{-1} (nx^{-1} + \epsilon)^{-1} (nx^{-1} + 1 + \epsilon)^{-1}.$$

For $\epsilon < 1$, this sum is at least $\sum_{n=1}^{x} (n + \epsilon x)^{-1} 3^{-1}$. Now, as $x \to \infty$,

(2.9)
$$\sum_{n=1}^{x} (n + \epsilon x)^{-1} = \log x(1 + \epsilon) - \log \epsilon x + O(1).$$

Hence the first limit in (2.7) is $\log 1 + \epsilon^{-1}$, which, indeed, tends to infinity with ϵ^{-1} . This proves the assertions.

References

1. K. L. Chung and W. H. J. Fuchs, On the distribution of sums of random variables, Mem. Amer. Math. Soc. No. 6 (1951), 12 pp.

2. L. A. Shepp, Symmetric random walk, Trans. Amer. Math. Soc. 104 (1962), 144-153.

Bell Telephone Laboratories, Murray Hill, New Jersey

542