RECURRENT RANDOM WALKS WITH ARBITRARILY LARGE STEPS

BY L. A. SHEPP
Communicated by G. A. Hunt, February 10, 1964

Introduction. The random walk generated by the distribution function (d.f.), F, is the sequence $S_{n}=X_{1}+\cdots+X_{n}$, of sums of independent and F-distributed random variables. If $P\left\{\left|S_{n}\right|<1\right.$, i.o. $\}=1$, F is called recurrent. ${ }^{1}$ If F is not recurrent, $P\left\{\left|S_{n}\right| \rightarrow \infty\right\}=1$ [1], and F is called transient. This note contains a proof that there are recurrent distributions with arbitrarily large tails. This assertion was made without proof in [2], where it is shown that for convex distributions, such behavior cannot take place.

1. Comparing random walks. We shall prove the following theorem.

Theorem. If $\epsilon=\epsilon(x)$ is defined for $x \geqq 0$, and $\epsilon(x) \rightarrow 0$, as $x \rightarrow \infty$, then there is a recurrent distribution function F, for which, for some x_{0},

$$
\begin{equation*}
1-F(x)=F(-x) \geqq \epsilon(x), \quad x \geqq x_{0} . \tag{1.1}
\end{equation*}
$$

This result may be restated in the following way. For any d.f. G, there is a recurrent d.f. F, and a sample space W on which sequences $X_{n}=X_{n}(w), Y_{n}=Y_{n}(w), n=1,2, \cdots$, may be defined so that for each $w \in W$,
(1.2) $\left|Y_{n}(w)\right|<\left|X_{n}(w)\right|, \operatorname{sign} Y_{n}(w)=\operatorname{sign} X_{n}(w), n=1,2, \cdots$, where $Y_{n}, n=1,2, \cdots$, are independently G-distributed, and X_{n}, $n=1,2, \cdots$, are independently F-distributed. Considering G transient, we have

$$
\begin{equation*}
P\left\{\left|Y_{1}+\cdots+Y_{n}\right| \rightarrow \infty,\left|X_{1}+\cdots+X_{n}\right|<1, \text { i.o. }\right\}=1 \tag{1.3}
\end{equation*}
$$

We remark that F cannot be chosen convex. If F is (eventually) convex, and $1-F(x)=F(-x) \geqq 1-G(x)=G(-x)$, where G is transient, then F is also transient [2].

The idea of the proof of the theorem is to move out the mass of G and bunch it up, leaving large gaps, so that the remaining steps somehow cancel themselves out.
2. Proof of the cancellation theorem. For symmetric F, the condition that F be recurrent is a tail condition [2], and may be stated

[^0]in terms of the characteristic function, $\phi(z)=\int \cos x z d F(x)$, as
\[

$$
\begin{equation*}
\int_{0}^{1}(1-\phi(t))^{-1} d t=\infty \tag{2.1}
\end{equation*}
$$

\]

Since any function ϵ of our theorem is majorized by a piecewise constant function, continuous except at integers, and decreasing to zero, we may restrict ourselves to functions of this type.

We shall prove the stronger assertion.
Lemma. If $p_{n}>0, n=1,2, \cdots, \sum p_{n}<\infty$, and $0<y_{n} \uparrow \infty$, are given, then

$$
\begin{equation*}
\int_{0}^{1}\left(\sum p_{n}\left(1-\cos x_{n} t\right)\right)^{-1} d t=\infty \tag{2.2}
\end{equation*}
$$

for some $x_{n} \geqq y_{n}, n=1,2, \cdots$.
Assuming the lemma, choose x_{0} so that $\epsilon\left(x_{0}^{-}\right) \leqq 1 / 2$, and set $p_{n}=\epsilon\left(y_{n}^{-}\right)-\epsilon\left(y_{n}^{+}\right)$, where $y_{n}, n=1,2, \cdots$, are the jumps of ϵ to the right of x_{0}. We define F to have mass p_{n} at $\pm x_{n}, n=1,2, \cdots$, provided by the lemma. The remaining mass of $F, 1-2 \epsilon\left(x_{0}^{-}\right)$ $=1-2 \sum p_{n}$ is placed at zero. As defined, F is symmetric, and

$$
1-F(x)=\sum_{x_{n} \geqq x} p_{n} \geqq \sum_{y_{n} \geqq x} p_{n} \geqq \epsilon(x)
$$

for $x>x_{0}$. By (2.2), we have (2.1), and F is recurrent.
To prove the lemma, assume that $n_{0}=0<n_{1}<\cdots<n_{k}$ have already been defined (start at $k=0$), and that $x_{1}, \cdots, x_{n_{k}}$ have been chosen so that $x_{n} \geqq y_{n}, n=1,2, \cdots, n_{k}$, and

$$
\begin{equation*}
\int_{0}^{1}\left(\sum_{n \leqq n_{k}} p_{n}\left(1-\cos x_{n} t\right)+2 \sum_{n>n_{k}} p_{n}\right)^{-1} d t \geqq k \tag{2.3}
\end{equation*}
$$

We shall show that it is possible to choose $n_{k+1}>n_{k}$ and $x_{n_{k}+1}, \cdots$, $x_{n_{k+1}}$, so that $x_{n} \geqq y_{n}, n_{k}<n \leqq n_{k+1}$, and so that (2.3) holds with k replaced by $k+1$. Having shown this, x_{n} are then inductively defined for all $n=1,2, \cdots$ and $x_{n} \geqq y_{n}$. Moreover, for any k,

$$
\begin{align*}
& \int_{0}^{1}\left(\sum p_{n}\left(1-\cos x_{n} t\right)\right)^{-1} d t \tag{2.4}\\
& \quad \geqq \int_{0}^{1}\left(\sum_{n \leqq n_{k}} p_{n}\left(1-\cos x_{n} t\right)+2 \sum_{n>n_{k}} p_{n}\right)^{-1} d t
\end{align*}
$$

and by (2.3), (2.2) follows.

We now show that $n_{k+1}=m$, and $x_{n_{k}+1}=x_{n_{k}+2}=\cdots=x_{n_{k+1}}=x$ can be defined, where $x \geqq y_{n_{k+1}}$, and $m>n_{k}$. This is a consequence of the following assertion, where $a=n_{k}$ is fixed

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \lim _{x \rightarrow \infty} \int_{0}^{1}\left(\sum_{n \leq a} p_{n}\left(1-\cos x_{n} t\right)\right. \\
&\left.+\left(\sum_{n=a+1}^{m} p_{n}\right)(1-\cos x t)+2 \sum_{n>m} p_{n}\right)^{-1} d t=\infty \tag{2.5}
\end{align*}
$$

Since $\sum_{n \leqq a} p_{n}\left(1-\cos x_{n} t\right) \leqq c t^{2}$ for some fixed $c>0$, we find that (2.5) is a consequence of (2.6),

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \lim _{x \rightarrow \infty} \int_{0}^{2 \pi}\left(t^{2}+1-\cos x t+\epsilon^{2}\right)^{-1} d t=\infty \tag{2.6}
\end{equation*}
$$

Writing $\int_{0}^{2 \pi}=\sum_{n=1}^{x} \int_{2 \pi(n-1) \leqslant t x<2 \pi n}$, and using the fact that $1-\cos$ $r \leqq c r^{2}$, for some $c>0$, we have only to show that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \lim _{x \rightarrow \infty} x^{-1} \sum_{n=1}^{x} \int_{0}^{2 \pi}\left(n^{2} x^{-2}+r^{2}+\epsilon^{2}\right)^{-1} d r=\infty \tag{2.7}
\end{equation*}
$$

Noting that $a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \leqq\left(a_{1}+a_{2}+a_{3}\right)^{2}$ for $a_{i} \geqq 0, i=1,2,3$, and integrating, the sum in (2.7) is at least

$$
\begin{align*}
x^{-1} \sum_{n=1}^{x} & \int_{0}^{1}\left(n x^{-1}+r+\epsilon\right)^{-2} d r \tag{2.8}\\
& =\sum_{n=1}^{x} x^{-1}\left(n x^{-1}+\epsilon\right)^{-1}\left(n x^{-1}+1+\epsilon\right)^{-1}
\end{align*}
$$

For $\epsilon<1$, this sum is at least $\sum_{n=1}^{x}(n+\epsilon x)^{-1} 3^{-1}$. Now, as $x \rightarrow \infty$,

$$
\begin{equation*}
\sum_{n=1}^{x}(n+\epsilon x)^{-1}=\log x(1+\epsilon)-\log \epsilon x+O(1) \tag{2.9}
\end{equation*}
$$

Hence the first limit in (2.7) is $\log 1+\epsilon^{-1}$, which, indeed, tends to infinity with ϵ^{-1}. This proves the assertions.

References

1. K. L. Chung and W. H. J. Fuchs, On the distribution of sums of random variables, Mem. Amer. Math. Soc. No. 6 (1951), 12 pp.
2. L. A. Shepp, Symmetric random walk, Trans. Amer. Math. Soc. 104 (1962), 144-153.

Bell Telephone laboratories, Murray Hill, New Jersey

[^0]: ${ }^{1}$ i.o. or infinitely often here means for infinitely many $n=1,2, \cdots$.

