ON THE LOCAL BEHAVIOR OF THE RATIONAL TSCHEBYSCHEFF OPERATOR

BY HELMUT WERNER

Communicated by A. S. Householder, February 10, 1964

Let l and r be non-negative integers. Denote by $\mathfrak{R}_{l,r}$ the set of all rational functions where the degrees of the numerator and denominator do not exceed l and r respectively. If $R = p/q \in \mathfrak{R}_{l,r}$ and pand q are relatively prime polynomials of degree ∂p and ∂q , then $d_{l,r}[R] := \min [l - \partial p, r - \partial q]$ is called the defect of R in $\mathfrak{R}_{l,r}$: the function R is called degenerate, if the defect is positive. (For these notations compare Werner (1962) [3].)

For a fixed interval [a, b] let $T_{l,r}[f]$ be the Tschebyscheff Approximation of $f \in C[a, b]$ in the class $\mathfrak{R}_{l,r}$ with respect to the norm $||f|| := \max_{[a,b]} |w(x) \cdot f(x)|$, with w(x) a positive continuous weight function in [a, b]. We write $\eta_{l,r}[f] := ||f - T_{l,r}[f]||$. Those f for which $T_{l,r}[f]$ is not degenerate are called normal by Cheney and Loeb (1963) [1]. Already Maehly and Witzgall (1960) [2] proved that $T_{l,r}[f]$ furnishes a continuous map of C[a, b] into itself at f with respect to the introduced norm, if f is normal. For the actual verification of normality one may use the following normality criterion:

Let g(x) be normal for $T_{l,r}$. Then f(x) is normal if

$$||f - g|| < (\eta_{l-1,r-1}[g] - \eta_{l,r}[g])/2.$$

Except for the case r=1, l arbitrary (compare Werner (1963) [5]) no specific properties of f are known to insure normality of f for arbitrary l, r.¹ Maehly and Witzgall (1960) [2] also gave an example that showed that $T_{l,r}[f]$ need not be continuous at f, if f is not normal. Recently Cheney and Loeb (1963) [1] made an extensive study of generalized rational approximation and proved that $T_{l,r}[f]$ is not continuous, if f is not normal and if no alternant of the error function $\eta(x) := w(x)(f(x) - T_{l,r}[f](x))$ has r+l+2 points. This later restriction may be lifted and one obtains the following classification.

THEOREM 1. The operator $T_{l,r}[f]$ is continuous at f if and only if f is normal or belongs to the class $\mathfrak{R}_{l,r}$.

In order to prove this, one now only has to cope with the case that the error function has an alternant of l+r+2 points. By a proper

¹ Added in proof. Recently a criterion has been published by H. L. Loeb, Notices Amer. Math. Soc. 11 (1964), 335.

construction one finds a sequence of continuous functions f_n ; $n=1, 2, \cdots$ that converges uniformly to f and whose associated T-approximations do not converge to $T_{l,r}[f]$.

The construction is not quite easy, because on the other hand one can prove that $T_{l,r}[f_n](x)$ converges to $T_{l,r}[f](x)$ pointwise in (a, b), if f_n converges to f uniformly in [a, b], and if $d_{l,r}[T_{l,r}[f]] \leq 1$. This result shows that one might expect convergence in a somewhat looser sense. If the defect is greater than 1, then pointwise convergence no longer persists, although from every sequence f_n uniformly converging to f a subsequence can be extracted for which the associated T-approximations converge pointwise with at most r exceptional points in [a, b]. Thus the best one can hope for is convergence in measure.

THEOREM 2. Given $f \in C[a, b]$. To every $\epsilon > 0$, $\epsilon_1 > 0$ one can find $\delta > 0$ such that

 $\|f-g\|<\delta$

implies that there is a finite number of intervals depending on g whose total length is less than ϵ_1 such that for all points of [a, b] not lying in the said intervals the inequality

 $\left| T_{l,r}[f](x) - T_{l,r}[g](x) \right| < \epsilon$

holds.

The proofs of these results will be given elsewhere, the methods used are similar to that of 7 of Werner (1962) [4].

References

1. E. W. Cheney and H. L. Loeb, *Generalized rational approximations*. I, Report of the Aerospace Corp., Los Angeles, Calif., 1963.

2. H. J. Maehly and Ch. Witzgall, Tschebyscheff-Approximationen in kleinen Intervallen. II, Numer. Math. 2 (1960), 293-307.

3. H. Werner, Tschebyscheff-Approximation im Bereich der rationalen Funktionen bei Vorliegen einer guten Ausgangsnäherung, Arch. Rational Mech. Anal. 10 (1962), 205–219.

4. ——, Die konstruktive Ermittlung der Tschebyscheff-Approximierenden im Bereich der rationalen Funktionen, Arch. Rational Mech. Anal. 11 (1962), 368–384.

5. ——, Rationale Tschebyscheff-Approximation, Eigenwerttheorie und Differenzenrechnung, Arch. Rational Mech. Anal. 13 (1963), 330–347.

STANFORD UNIVERSITY AND

Institut für Angewandte Mathematik der Universität, Hamburg, Germany