ON A STATIONARY APPROACH TO SCATTERING PROBLEM ${ }^{1}$

BY S. T. KURODA
Communicated by P. Lax, April 1, 1964

1. Let $H_{p}, p=1,2$, be self-adjoint operators in a Hilbert space \mathfrak{G} satisfying the condition

$$
\begin{equation*}
\left(H_{1}-z\right)^{-1}-\left(H_{0}-z\right)^{-1} \in T(\mathfrak{S}), \quad z \in \rho\left(H_{0}\right) \cap \rho\left(H_{1}\right) \tag{1}
\end{equation*}
$$

Here, $\boldsymbol{T}(\mathfrak{S})$ denotes the trace class of completely continuous operators in \mathfrak{S} and $\rho\left(H_{p}\right)$ the resolvent set of H_{p}. The perturbation theory of absolutely continuous (abbr. a.c.) parts of H_{p} as well as the theory of wave and scattering operators has recently been studied independently by de Branges [2], Birman and Kreĭn [1], and Kato [3]. In [1] and [3] the problem was considered from the viewpoint of the scattering theory. In particular, the wave operators $W_{ \pm}$were proved to exist and hence to be partially isometric operators which give the unitary equivalence of a.c. parts of H_{0} and H_{1}. In [2], on the contrary, similar partially isometric operators $\hat{W}_{ \pm}$were constructed somewhat explicitly and without referring to the limit of wave operator type. The purpose of the present note is to study the latter approach from a viewpoint of the scattering theory and to see that the so-called time-independent or stationary approach to the theory of wave and scattering operators can be made possible under the condition (1). In a simpler case, a similar study was made in [4]. Our construction of the operator similar to $\hat{W}_{ \pm}$, i.e. the operator given by the right side of (9), is similar to but slightly different from that given in [2]. In particular, the use of the auxiliary operator I in [2] is avoided. Furthermore, the construction of the operators π_{0} and π_{1} in 3 might be a little more explicit than that of the corresponding operators given in [2].
2. Let © be a separable Hilbert space and let $T_{p} \equiv T_{p}(\mathbb{C}) \subset T(\mathbb{C})$ be the set of all non-negative operators in $T(\mathbb{C})$. The trace norm will generally be denoted by $\tau()$. Let μ be a T_{p}-valued measure defined for bounded Borel sets of the reals R^{1}. Then the set function ρ, first defined at each bounded Borel set e as $\rho(e)=\tau(\mu(e))$ and then ex-

[^0]tended by additivity to the Borel field of R^{1}, is a σ-finite (nonnegative) measure.

The $L^{2}(\mu)$ space over μ is defined as in [2]. In particular, the set $L_{0}^{2}(\mu)$ of all functions $f(x)$ from R^{1} into © such that $\int_{-\infty}^{\infty}|f(x)|^{2} d \rho(x)$ $<\infty$ forms a dense subset of $L^{2}(\mu)$ (after identification of functions equivalent in a certain sense). The space $L^{2}(\mu)$ can be identified with the direct sum of the L^{2} spaces over the absolutely continuous and singular components of $\mu: L^{2}(\mu)=L^{2}\left(\mu_{a c}\right) \oplus L^{2}\left(\mu_{s}\right)$. The space $L^{2}\left(\mu_{a c}\right)$ is then the a.c. subspace of $L^{2}(\mu)$ with respect to the multiplication operator by x in $L^{2}(\mu)$.

In what follows we assume as in [2] that every T_{p}-valued measure μ satisfies the condition

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d \rho(x)<\infty \tag{2}
\end{equation*}
$$

For such μ, the T-valued function $\phi_{\mu}(z)$ of a complex variable z, $\operatorname{Im} z \neq 0$, is defined as

$$
\phi_{\mu}(z)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x z+1}{(x-z)\left(1+x^{2}\right)} d \mu(x)
$$

(The integral on the right may be regarded as the (improper) integral of a scalar function with respect to a vector-valued measure. Here, we note that the use of the coordinate representation in \mathfrak{C} with respect to a complete orthonormal set allows us to make the definition of $L^{2}(\mu)$ space as well as the interpretation of all the integrals appearing in this note by means of the theory of integration of a vector-valued function with respect to a scalar measure.)

Now the following lemma, given in [2] and reformulated below in a slightly different form, will be our starting point.

Lemma. (i) The limits on reals of $\phi_{\mu}(z)$:

$$
\phi_{\mu}(x \pm i 0)=\lim _{\in \downarrow 0} \phi_{\mu}(x \pm i \epsilon), \quad-\infty<x<\infty
$$

exist in the Schmidt norm in © almost everywhere with respect to the Lebesgue measure.
(ii) Let μ and ν be T_{p}-valued measures both satisfying the condition such as (2). Let there exist self-adjont operators α and β in \mathfrak{C} such that

$$
\begin{equation*}
\left\{\alpha+\phi_{\mu}(z)\right\}\left\{\beta+\phi_{\nu}(z)\right\}=\left\{\beta+\phi_{\nu}(z)\right\}\left\{\alpha+\phi_{\mu}(z)\right\}=-1 \tag{3}
\end{equation*}
$$

holds for every nonreal z and put

$$
w(z)=\alpha+\phi_{\mu}(z), \quad w_{ \pm}(x)=w(x \pm i 0)
$$

Then, the mapping which assigns $w_{ \pm}(x) f(x)$ to each $f(x) \in L_{0}^{2}\left(\mu_{a c}\right)$ is well-defined as an isometric mapping $L_{0}^{2}\left(\mu_{a c}\right)$ onto $L_{0}^{2}\left(\nu_{a c}\right)$ and hence can be extended uniquely to a partially isometric operator $\Omega_{ \pm}$from $L^{2}(\mu)$ into $L^{2}(\nu)$ with the initial set $L^{2}\left(\mu_{a c}\right)$ and the final set $L^{2}\left(\nu_{a c}\right)$. Therefore, if we denote the operators of the multiplication by x in $L^{2}(\mu)$ and $L^{2}(\nu)$ by A and B, respectively, then each of $\Omega_{ \pm}$gives the unitary equivalence between the a.c. parts of A and B.
(iii) Under the same assumption as in (ii), there exists a uniquely determined unitary operator T from $L^{2}(\mu)$ onto $L^{2}(\nu)$ such that T maps $(x-z)^{-1} c \in L_{0}^{2}(\mu)$ to $w(z)(x-z)^{-1} c \in L_{0}^{2}(\nu)$ for every nonreal z and $c \in \mathbb{C}$.

Now, the following theorem establishes a connection of $\Omega_{ \pm}$with the "asymptotic limit" of wave operator type.

Theorem 1. Let μ, ν, A, B and T be as in the lemma. Then, we have

$$
\Omega_{ \pm}=\underset{t \rightarrow \pm \infty}{\operatorname{s}-\lim _{m}} \exp (i t B) T \exp (-i t A) P
$$

where P is the orthogonal projection in $L^{2}(\mu)$ onto its subspace $L^{2}\left(\mu_{a c}\right)$.
The proof of Theorem 1 is an adaptation of the arguments given in Kato [3, §5] which essentially prove Theorem 1 in the case of dim © $=1$. In particular, we get a kind of representation of T such as (4.5) of [3].
3. We shall next apply the foregoing consideration to the theory of wave operators. We shall begin with the following theorem which is deduced from Theorem 1 in a routine way.

Theorem 2. Let $H_{p}, p=0,1$, be self-adjoint operators in a Hilbert space \mathfrak{S} and P_{p} the orthogonal projection onto the a.c. subspace \mathfrak{M}_{p} of \mathfrak{S} with respect to H_{p}. Furthermore, let there exist a separable Hilbert space $\mathfrak{C}, T_{p}(\mathbb{C})$-valued measure μ and ν, and unitary operators π_{0} and π_{1} from \mathfrak{S} onto $L^{2}(\mu)$ and $L^{2}(\nu)$, respectively, such that (A and B are used as in Theorem 1): (i) $H_{0}=\pi_{0}^{-1} A \pi_{0}, H_{1}=\pi_{1}^{-1} B \pi_{1}$; and (ii) μ and ν satisfy the relation (3) with certain self-adjoint α and β. Then, the wave operator

$$
W_{ \pm}=\underset{t \rightarrow \pm \infty}{\operatorname{s-lim}} \exp (i t H) \exp \left(-i t H_{0}\right) P_{0}
$$

exists if and only if there exists a unitary operator $U_{ \pm}$in $\mathfrak{5}$ such that: (a) $H_{1} U_{ \pm}=U_{ \pm} H_{1}$; and (b) $\lim _{t \rightarrow \pm \infty}\left(\pi_{1}^{-1} T \pi_{0}-U_{ \pm}\right) \exp \left(-i t H_{0}\right) u=0$ for each $u \in M_{0}$. In this case we have

$$
W_{ \pm}=U_{ \pm}^{-1} \pi_{1}^{-1} \Omega_{ \pm} \pi_{0}
$$

and hence $W_{ \pm} \mathfrak{F}=\mathfrak{M}_{1}$.

We now assume that H_{0} and H_{1} satisfy the assumption (1) and construct μ, ν etc. in such a way that they satisfy (i), (ii), (a) and (b) in Theorem 2.
Let $U_{p}=\left(H_{p}-i\right)\left(H_{p}+i\right)^{-1}$ be the Cayley transform of H_{p}. Then, the assumption (1) implies that $K=\left(U_{1}-U_{0}\right) U_{0}^{-1} \in T\left(\mathfrak{W}_{2}\right)$ and it is expressible as

$$
K=\sum_{k=1}^{\infty} a_{k}\left(\cdot, \phi_{k}\right) \phi_{k},
$$

where $\left(\phi_{i}, \phi_{j}\right)=\delta_{i j},\left|1+a_{k}\right|=1,\left|a_{k}\right| \neq 0$, and $\sum\left|a_{k}\right|<\infty$. Furthermore, let $H_{p}=\int x d E_{p}(x)$ be the spectral resolution of H_{p} and let $F_{p}(e)=\int_{e}\left(1+x^{2}\right) d E_{p}(x)$ for each bounded Borel set e.

Let now \mathfrak{C} be the closed subspace of \mathfrak{S} spanned by $\left\{\phi_{k}\right\}$ and put

$$
\begin{equation*}
\mu(e)=\xi^{*} F_{0}(e) \xi, \quad \nu(e)=\eta^{*} F_{1}(e) \eta \tag{4}
\end{equation*}
$$

where ξ and η be given by

$$
\begin{equation*}
\xi=\sum_{k=1}^{\infty} \xi_{k}\left(\cdot, \phi_{k}\right) \phi_{k}, \quad \eta=\sum_{k=1}^{\infty} \eta_{k}\left(\cdot, \phi_{k}\right) \phi_{k}, \tag{5}
\end{equation*}
$$

with $\left\{\xi_{k}\right\}$ and $\left\{\eta_{k}\right\}$ being square summable sequences to be determined below. ξ and η are considered to be operators from \mathfrak{C} to \mathfrak{y} so that $\mu(e) \in T_{p}(\mathbb{E})$ and $\nu(e) \in T_{p}(\mathbb{E})$. We further assume that α and β in (3) have the form

$$
\begin{equation*}
\alpha=\sum_{k=1}^{\infty} \alpha_{k}\left(\cdot, \phi_{k}\right) \phi_{k}, \quad \beta=\sum_{k=1}^{\infty} \beta_{k}\left(\cdot, \phi_{k}\right) \phi_{k} \tag{6}
\end{equation*}
$$

with bounded real sequences $\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}$ and want to determine these sequences so that the relation (3) is true. The source of a reciprocal relation such as (3) is the following reciprocal relation in the operator form:

$$
\begin{equation*}
\left\{1+K^{\prime}\left(U_{0}-w\right)^{-1}\right\}\left\{1-K^{\prime}\left(U_{1}-w\right)^{-1}\right\}=1, \quad|w| \neq 1 \tag{7}
\end{equation*}
$$

where we put $K^{\prime}=U_{1}-U_{0}=K U_{0}$. On the other hand, (4) gives that $\alpha+\phi_{\mu}(z)=\alpha+i \pi^{-1} \xi^{*}\left(U_{0}+w\right)\left(U_{0}-w\right)^{-1} \xi$ with $w=(z-i)(z+i)^{-1}$. By using this and the similar relation for ν to express (3) in terms of w and comparing it with (7), we have the following proposition.

Proposition. If we put $\xi_{k}=\left|a_{k}\right| 1 / 2 \xi_{k}^{\prime}$ with an arbitrary sequence $\left\{\xi_{k}^{\prime}\right\}$ of complex numbers such that $0<a \leqq\left|\xi_{k}^{\prime}\right| \leqq b<\infty$ for some positive a and b, and determine $\left\{\eta_{k}\right\},\left\{\alpha_{k}\right\}$ and $\left\{\beta_{k}\right\}$ successively by the relations

$$
\begin{align*}
2 \xi_{k} \bar{\eta}_{k} & =-\pi a_{k}\left(\bar{a}_{k}+1\right)=\pi \bar{a}_{k} \\
\alpha_{k} & =i \pi^{-1}\left(1+2 / a_{k}\right)\left|\xi_{k}\right|^{2} \tag{8}\\
\beta_{k} & =i \pi^{-1}\left(1+2 / \bar{a}_{k}\right)\left|\eta_{k}\right|^{2}
\end{align*}
$$

then μ, ν, α, and β defined by (4), (5), and (6) satisfy the relation (3). Furthermore, it automatically follows that $\left\{\alpha_{k}\right\}$ and $\left\{\beta_{k}\right\}$ are real and bounded and that $\sum\left|\xi_{k}\right|^{2}, \sum\left|\eta_{k}\right|^{2}<\infty$.

We now construct π_{0} and π_{1}. We can assume without loss of generality that the set of all elements of \mathfrak{S} of the form

$$
u=\sum_{k=1}^{n} u_{k}^{(p)}\left(H_{p}\right) \phi_{k}
$$

with $u_{k}^{(p)}$ such that $\int\left|u_{k}^{(p)}(x)\right|^{2} d\left\|E_{p}(x) \phi_{k}\right\|^{2}<\infty$ forms a dense set in \mathfrak{F} for each $p=0$, 1 . (The closure of the above set is independent of p and on its orthogonal complement we have $H_{0}=H_{1}$.) For such a u with $p=0$ we define

$$
\left(\pi_{0} u\right)(x)=\sum_{k=1}^{n} \xi_{k}^{-1} u_{k}^{(0)}(x)(x+i)^{-1} \phi_{k}
$$

and $\left(\pi_{1} u\right)(x)$ similarly with ξ replaced by η. Then, π_{0} and π_{1} can be uniquely extendable to unitary operators from \mathfrak{y} on $L^{2}(\mu)$ and $L^{2}(\nu)$, respectively. Now the very relation (8) which ensured the validity of (3) also implies the relation $T \pi_{0}=i \pi_{1}$. Thus, we have the following theorem.

Theorem 3. With μ, ν, α, and β defined in the Proposition and $\pi_{p}, p=0,1$, constructed as above, the conditions (i), (ii), (a) and (b) in Theorem 2 hold true. Thus, under the assumption (1), $W_{ \pm}\left(H_{1}, H_{0}\right)$ exists and is given by

$$
\begin{equation*}
W_{ \pm}\left(H_{1}, H_{0}\right)=-i \pi_{1}^{-1} \Omega_{ \pm} \pi_{0} \tag{9}
\end{equation*}
$$

with $\Omega_{ \pm}$constructed as in Lemma 1.

References

1. M. Sh. Birman and M. G. Kreĭn, On the theory of wave and scattering operators, Dokl. Akad. Nauk 144 (1962), 475-478.
2. L. de Branges, Perturbation of self-adjoint transformations, Amer. J. Math. 84 (1962), 543-560.
3. T. Kato, Wave operators and unitary equivalence, Tech. Rep., Univ. of Calif., Berkeley, Calif., 1963.
4. S. T. Kuroda, Finite-dimensional perturbation and a representation of scattering operator, Pacific J. Math. 13 (1963), 1305-1318.

University of Tokyo, Tokyo, Japan

[^0]: ${ }^{1}$ The work was partly supported by the National Science Foundation through Purdue University (NSF G-18920). The author wishes to express his thanks to Professor Louis de Branges for valuable discussions and kind hospitality extended to the author while he was visiting Purdue University.

