4. N. Jacobson, Abstract derivations and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), 206-224.
5. ——, p-Algebras of exponent p, Bull. Amer. Math. Soc. 43 (1937), 667-670.
6. -, Galois theory of purely inseparable fields of exponent one, Amer. J. Math. 46 (1944), 645-648.
7. -, Lectures in abstract algebra, Vol. III, Van Nostrand, Princeton, N. J., 1964.
8. O. Zariski and P. Samuel, Commutative algebra, Van Nostrand, Princeton, N. J., 1958.

University of Pennsylvania

A SPARSE REGULAR SEQUENCE OF EXPONENTIALS CLOSED ON LARGE SETS

BY H. J. LANDAU
Communicated by P. D. Lax, March 30, 1964

Introduction. For a given sequence $\left\{\lambda_{k}\right\}$ of complex numbers, the problem of determining those intervals I on which the exponentials $\left\{e^{i \lambda_{k} x}\right\}$ are complete in various function spaces has been extensively studied [3]. Since the problem is invariant under a translation of I, only the lengths of I are involved, and attention has focused on the relation between these lengths and the density of the sequence $\left\{\lambda_{k}\right\}$. With the function space taken to be $L^{p}(I)$ for $1 \leqq p<\infty$, or $C(I)$, the continuous functions on I, the general character of the results has been that there exist sparse real sequences (lim r^{-1} (the number of $\left.\left|\lambda_{k}\right|<r\right)=0$, for example) for which I can be arbitrarily long [2], but all such sequences are nonuniformly distributed; when a sequence is sufficiently regular, in the sense that λ_{k} is close enough to k, the length of I cannot exceed 2π [4, p. 210]. Most recently, in a complete solution which accounts for all these phenomena, Beurling and Malliavin have proved that the supremum of the lengths of I is proportional to an appropriately defined density of $\left\{\lambda_{k}\right\}[1]$.

The purpose of this note is to show that the situation is quite different when the single interval I is replaced by a union of intervals. Specifically, we will construct a real symmetric (or positive) sequence $\left\{\lambda_{k}\right\}$ arbitrarily close to the integers, for which the corresponding exponentials are complete in $C(S)$, where S is any finite union of the intervals $|x-2 n \pi|<\pi-\delta$, with integer n and $\delta>0$, and so has arbitrarily large measure. Thus, for sets S more general than intervals,
it would seem that no relation can be expected between measure of S and density of $\left\{\lambda_{k}\right\}$.
Acknowledgment. I am very indebted to Professor Beurling for his interest and advice.

Results.

Lemma 1. We may partition the positive integers into an infinite number of disjoint sequences $S_{r}=\left\{k_{n}^{(r)}\right\}_{n=1}^{\infty}, r=1,2, \cdots$, with the property that $\lim \sup n / k_{n}^{(r)}=1$ for each r.

Proof. We will define S_{r} as the union $\mathrm{U}_{i=1}^{\infty} \sigma_{i, r}$ of disjoint blocks $\sigma_{i, r}$ of consecutive integers. To define $\sigma_{i, r}$, we order the integer couples (i, r) with $i, r \geqq 1$, by increasing values of $s=i+r$, and for same values of s, by increasing i. We let $\sigma_{1,1}=\{1\}$ and choose the remaining $\sigma_{i, r}$ consecutively in the order of the (i, r), letting each $\sigma_{p, q}$ begin with the first integer not included in the previously defined σ; we pick $\sigma_{p, \text {, }}$ so long that if N is the number of integers in $\sigma_{p, q}$, k is the first of them, and M is the total number of integers in the (already determined) $\sigma_{j, q}$ with $j<p$, then $(N+M) /(k+N-1)$ $>1-1 / p$. By this construction, whenever $k_{n}^{(r)}$ in S_{r} coincides with the right-hand endpoint of a $\sigma_{i, r}$ we have $n / k_{n}^{(r)}>1-1 / i$, so that $\lim \sup n / k_{n}^{(r)}=1$ for each r. Finally, the S_{r} are all disjoint and their union is all positive integers. Lemma 1 is established.

Lemma 2. With $\theta_{1}, \theta_{2}, \cdots$ real numbers, set $z_{k}=e^{i 2 \pi \theta_{k}}$, and denote by $\Delta\left(\theta_{1}, \cdots, \theta_{n}\right)$ the determinant whose $2 j$ th row is $z_{j}^{n-1}, z_{j}^{n-2}, \cdots, z_{j}^{-n}$ and whose $(2 j-1)$ th row is $z_{j}^{-n+1}, z_{j}^{-n+2}, \cdots, z_{j}^{n}$, with $1 \leqq j \leqq n$. Then given $\epsilon>0$ we may choose $\theta_{1}, \theta_{2}, \cdots$ with $\left|\theta_{i}\right|<\epsilon$ so that, for all n, we have $\Delta\left(\theta_{1}, \cdots, \theta_{n}\right) \neq 0$.

Proof. The condition $\left|\theta_{i}\right|<\epsilon$ is equivalent to $z_{i} \in \gamma$, with γ an appropriate arc of $|z|=1$. First, letting z_{1} be any point of γ other than $z=1$ ensures $\Delta\left(\theta_{1}\right) \neq 0$. Then we observe that $\Delta\left(\theta_{1}, \cdots, \theta_{n}\right)$ can be expanded as a polynomial in z_{n} and z_{n}^{-1}, with leading coefficient $\Delta\left(\theta_{1}, \cdots, \theta_{n-1}\right)$. Assuming z_{1}, \cdots, z_{n-1} have been chosen to satisfy the requirements of the lemma, this coefficient does not vanish, and so $\Delta\left(\theta_{1}, \cdots, \theta_{n}\right)$ considered as a function of z_{n} is not identically zero; being analytic in z_{n} it therefore cannot vanish everywhere for z_{n} on γ. Thus we may find a point $e^{i 2 \pi \theta_{n}} \in \gamma$ such that when $z_{n}=e^{i 2 \pi \theta_{n}}$, $\Delta\left(\theta_{1}, \cdots, \theta_{n}\right) \neq 0$. By induction, Lemma 2 is established.

Theorem. Given $\epsilon>0$, there exists a symmetric real sequence $\left\{\lambda_{k}\right\}_{-\infty}^{\infty}$ with $\left|\lambda_{k}-k\right|<\epsilon$ such that the functions $\left\{e^{i \lambda_{k} x}\right\}$ are complete in continu-
ous functions on every finite union of the intervals $|x-2 n \pi|<\pi-\delta$, with integer n and $\delta>0$.

Proof. We will partition the integers into disjoint subsets, shift each subset by a small amount, and let the sequence $\left\{\lambda_{k}\right\}$ consist of the points so obtained. Then we will show that completeness of the corresponding exponentials on unions of certain intervals is equivalent to completeness on a single interval of $\left\{e^{i k x}\right\}$, with k in one subset, and thereby reduce the theorem to a classical result.

Let $S_{r}, r=1,2, \cdots$, be the disjoint subsets of the integers defined in Lemma 1, and let $S_{-r}=\left\{k \mid-k \in S_{r}\right\}$. Similarly, let $\theta_{r}, r=1,2, \cdots$, be the numbers constructed in Lemma 2, and let $\theta_{-r}=-\theta_{r}$. Now for $k \in S_{r}, r= \pm 1, \pm 2, \cdots$, set $\lambda_{k}=k+\theta_{r}$, and $\lambda_{0}=0$. Then the sequence $\left\{\lambda_{k}\right\}_{-\infty}^{\infty}$ is symmetric and $\left|\lambda_{k}-k\right|<\epsilon$.

To prove the theorem we must show that given N and $\delta>0$, the exponentials $\left\{e^{i \lambda_{k} x}\right\}$ are complete in $C(S)$, where $S=\cup_{n=-N+1}^{N} I_{n}$, and I_{n} is the interval $|x-2 n \pi|<\pi-\delta$, or equivalently [4, p. 115] that any bounded measure supported on S which annihilates these exponentials must vanish identically. Accordingly, let $\mu(x)$ be such a measure, and denote by $\mu_{n}(x-2 n \pi)$ the restriction of $\mu(x)$ to I_{n}. Then $\mu_{n}(x)$ is a bounded measure supported on I_{0}, and

$$
\begin{equation*}
\mu(x)=\sum_{n=-N+1}^{N} \mu_{n}(x-2 n \pi) \tag{1}
\end{equation*}
$$

Now by a change of variable,

$$
\int_{S} e^{i \lambda_{k} x} d \mu(x)=\sum_{n=-N+1}^{N} e^{i \lambda_{k} 2 n \pi} \int_{I_{0}} e^{i \lambda_{k} x} d \mu_{n}(x),
$$

and if $k \in S_{r}, e^{i \lambda_{k} 2 n \pi}=e^{i \theta_{r} 2 n \pi}$ and does not depend on k. Thus if $\mu(x)$ annihilates the exponentials $\left\{e^{i \lambda_{k} x}\right\}$ for $k \in S_{r}$, so does

$$
\begin{equation*}
\sum_{n=-N+1}^{N} e^{i \theta_{r} 2 n \pi} \mu_{n}(x) \tag{2}
\end{equation*}
$$

which is a bounded measure supported on the single interval I_{0}.
We now invoke a known result [3, p. 13]: since by Lemma 1 , $\lim \sup n / k_{n}=1$ in each S_{r}, the set S_{r} has Polya density 1 , and so the exponentials $\left\{e^{i k x}\right\}$ for $k \in S_{r}$ are complete in continuous functions on any interval of length less than 2π, in particular on I_{0}. By definition of the set $\left\{\lambda_{k}\right\}$ for $k \in S_{r}$ as a translate of S_{r}, the same is true of the exponentials $\left\{e^{i \lambda_{k} x}\right\}, k \in S_{r}$, and consequently the measure (2) on I_{0} which annihilates them must vanish identically. We conclude

$$
\begin{equation*}
\sum_{n=-N+1}^{N} e^{i \theta_{r} 2 n \pi} \mu_{n}(x) \equiv 0, \quad x \in I_{0} \tag{3}
\end{equation*}
$$

for each r. Writing (3) with $r= \pm 1, \cdots, \pm N$ yields a system of $2 N$ linear equations for the $2 N$ measures $\mu_{n}(x),-N+1 \leqq n \leqq N$, whose determinant is precisely $\Delta\left(\theta_{1}, \cdots, \theta_{N}\right)$ and so, by Lemma 2 , does not vanish. Thus the only solution to this system is $\mu_{n}(x) \equiv 0,-N+1$ $\leqq n \leqq N$, whence $\mu(x) \equiv 0$ by (1). This completes the proof of the theorem.

Remarks. 1. By an obvious modification of the proof, the exponentials $\left\{e^{i \lambda_{k} x}\right\}$ with $k \in S_{r}$ for $r>0$ have the same completeness property.
2. We may give a constructive proof of the theorem along the same lines. Shifting each I_{n} to I_{0} transforms the problems of approximating a continuous function on S by linear combinations of the exponentials $\left\{e^{i \lambda_{k} x}\right\}$ into that of solving a system of linear equations on I_{0} with nonzero determinant, and thereby again reduces matters to approximating on I_{0} by linear combinations of $\left\{e^{i k x}\right\}$ for $k \in S_{r}$.

Bibliography

1. A. Beurling and P. Malliavin, On the closure of a sequence of exponentials on a segment, Multigraphed lectures, Summer Institute on Harmonic Analysis, Stanford University, Stanford, Calif., 1961.
2. J. P. Kahane, Sur la totalite des suites d'exponentielles imaginaires, Ann. Inst. Fourier (Grenoble) 8 (1958), 273-275.
3. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ. Vol. 26, Amer. Math. Soc., Providence, R. I., 1940.
4. F. Riesz and B. Sz-Nagy, Functional analysis, Ungar, New York, 1955.

Bell Telephone Laboratories

