4. N. Jacobson, Abstract derivations and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), 206–224.

5. ____, p-Algebras of exponent p, Bull. Amer. Math. Soc. 43 (1937), 667-670. 6. ____, Galois theory of purely inseparable fields of exponent one, Amer. J. Math.

6. ———, Galois theory of purely inseparable fields of exponent one, Amer. J. Math. **46** (1944), 645–648.

7. ——, Lectures in abstract algebra, Vol. III, Van Nostrand, Princeton, N. J., 1964.

8. O. Zariski and P. Samuel, *Commutative algebra*, Van Nostrand, Princeton, N. J., 1958.

UNIVERSITY OF PENNSYLVANIA

A SPARSE REGULAR SEQUENCE OF EXPONENTIALS CLOSED ON LARGE SETS

BY H. J. LANDAU

Communicated by P. D. Lax, March 30, 1964

Introduction. For a given sequence $\{\lambda_k\}$ of complex numbers, the problem of determining those intervals I on which the exponentials $\{e^{i\lambda kx}\}$ are complete in various function spaces has been extensively studied [3]. Since the problem is invariant under a translation of I, only the lengths of I are involved, and attention has focused on the relation between these lengths and the density of the sequence $\{\lambda_k\}$. With the function space taken to be $L^p(I)$ for $1 \leq p < \infty$, or C(I), the continuous functions on I, the general character of the results has been that there exist sparse real sequences ($\lim r^{-1}$ (the number of $|\lambda_k| < r = 0$, for example) for which I can be arbitrarily long [2], but all such sequences are nonuniformly distributed; when a sequence is sufficiently regular, in the sense that λ_k is close enough to k, the length of I cannot exceed 2π [4, p. 210]. Most recently, in a complete solution which accounts for all these phenomena, Beurling and Malliavin have proved that the supremum of the lengths of I is proportional to an appropriately defined density of $\{\lambda_k\}$ [1].

The purpose of this note is to show that the situation is quite different when the single interval *I* is replaced by a union of intervals. Specifically, we will construct a real symmetric (or positive) sequence $\{\lambda_k\}$ arbitrarily close to the integers, for which the corresponding exponentials are complete in C(S), where *S* is any finite union of the intervals $|x-2n\pi| < \pi - \delta$, with integer *n* and $\delta > 0$, and so has arbitrarily large measure. Thus, for sets *S* more general than intervals,

it would seem that no relation can be expected between measure of S and density of $\{\lambda_k\}$.

Acknowledgment. I am very indebted to Professor Beurling for his interest and advice.

Results.

LEMMA 1. We may partition the positive integers into an infinite number of disjoint sequences $S_r = \{k_n^{(r)}\}_{n=1}^{\infty}$, $r = 1, 2, \cdots$, with the property that $\limsup n/k_n^{(r)} = 1$ for each r.

PROOF. We will define S_r as the union $\bigcup_{i=1}^{\infty} \sigma_{i,r}$ of disjoint blocks $\sigma_{i,r}$ of consecutive integers. To define $\sigma_{i,r}$, we order the integer couples (i, r) with $i, r \ge 1$, by increasing values of s=i+r, and for same values of s, by increasing i. We let $\sigma_{1,1}=\{1\}$ and choose the remaining $\sigma_{i,r}$ consecutively in the order of the (i, r), letting each $\sigma_{p,q}$ begin with the first integer not included in the previously defined σ ; we pick $\sigma_{p,q}$ so long that if N is the number of integers in $\sigma_{p,q}$, k is the first of them, and M is the total number of integers in the (already determined) $\sigma_{j,q}$ with j < p, then (N+M)/(k+N-1) > 1-1/p. By this construction, whenever $k_n^{(r)}$ in S_r coincides with the right-hand endpoint of a $\sigma_{i,r}$ we have $n/k_n^{(r)} > 1-1/i$, so that lim sup $n/k_n^{(r)} = 1$ for each r. Finally, the S_r are all disjoint and their union is all positive integers.

LEMMA 2. With $\theta_1, \theta_2, \cdots$ real numbers, set $z_k = e^{i2\pi\theta_k}$, and denote by $\Delta(\theta_1, \cdots, \theta_n)$ the determinant whose 2jth row is $z_j^{n-1}, z_j^{n-2}, \cdots, z_j^{-n}$ and whose (2j-1)th row is $z_j^{-n+1}, z_j^{-n+2}, \cdots, z_j^n$, with $1 \le j \le n$. Then given $\epsilon > 0$ we may choose $\theta_1, \theta_2, \cdots$ with $|\theta_i| < \epsilon$ so that, for all n, we have $\Delta(\theta_1, \cdots, \theta_n) \ne 0$.

PROOF. The condition $|\theta_i| < \epsilon$ is equivalent to $z_i \in \gamma$, with γ an appropriate arc of |z| = 1. First, letting z_1 be any point of γ other than z = 1 ensures $\Delta(\theta_1) \neq 0$. Then we observe that $\Delta(\theta_1, \dots, \theta_n)$ can be expanded as a polynomial in z_n and z_n^{-1} , with leading coefficient $\Delta(\theta_1, \dots, \theta_{n-1})$. Assuming z_1, \dots, z_{n-1} have been chosen to satisfy the requirements of the lemma, this coefficient does not vanish, and so $\Delta(\theta_1, \dots, \theta_n)$ considered as a function of z_n is not identically zero; being analytic in z_n it therefore cannot vanish everywhere for z_n on γ . Thus we may find a point $e^{i2\pi\theta_n} \in \gamma$ such that when $z_n = e^{i2\pi\theta_n}$, $\Delta(\theta_1, \dots, \theta_n) \neq 0$. By induction, Lemma 2 is established.

THEOREM. Given $\epsilon > 0$, there exists a symmetric real sequence $\{\lambda_k\}_{-\infty}^{\infty}$ with $|\lambda_k - k| < \epsilon$ such that the functions $\{e^{i\lambda_k x}\}$ are complete in continu-

ous functions on every finite union of the intervals $|x-2n\pi| < \pi - \delta$, with integer n and $\delta > 0$.

PROOF. We will partition the integers into disjoint subsets, shift each subset by a small amount, and let the sequence $\{\lambda_k\}$ consist of the points so obtained. Then we will show that completeness of the corresponding exponentials on unions of certain intervals is equivalent to completeness on a single interval of $\{e^{ikx}\}$, with k in one subset, and thereby reduce the theorem to a classical result.

Let S_r , $r = 1, 2, \dots$, be the disjoint subsets of the integers defined in Lemma 1, and let $S_{-r} = \{k \mid -k \in S_r\}$. Similarly, let θ_r , $r = 1, 2, \dots$, be the numbers constructed in Lemma 2, and let $\theta_{-r} = -\theta_r$. Now for $k \in S_r$, $r = \pm 1, \pm 2, \dots$, set $\lambda_k = k + \theta_r$, and $\lambda_0 = 0$. Then the sequence $\{\lambda_k\}_{-\infty}^{\infty}$ is symmetric and $|\lambda_k - k| < \epsilon$.

To prove the theorem we must show that given N and $\delta > 0$, the exponentials $\{e^{i\lambda_k x}\}$ are complete in C(S), where $S = \bigcup_{n=-N+1}^{N} I_n$, and I_n is the interval $|x-2n\pi| < \pi - \delta$, or equivalently [4, p. 115] that any bounded measure supported on S which annihilates these exponentials must vanish identically. Accordingly, let $\mu(x)$ be such a measure, and denote by $\mu_n(x-2n\pi)$ the restriction of $\mu(x)$ to I_n . Then $\mu_n(x)$ is a bounded measure supported on I_0 , and

(1)
$$\mu(x) = \sum_{n=-N+1}^{N} \mu_n(x - 2n\pi).$$

Now by a change of variable,

$$\int_{S} e^{i\lambda_k x} d\mu(x) = \sum_{n=-N+1}^{N} e^{i\lambda_k 2n\pi} \int_{I_0} e^{i\lambda_k x} d\mu_n(x),$$

and if $k \in S_r$, $e^{i\lambda_k 2n\pi} = e^{i\theta_r 2n\pi}$ and does not depend on k. Thus if $\mu(x)$ annihilates the exponentials $\{e^{i\lambda_k x}\}$ for $k \in S_r$, so does

(2)
$$\sum_{n=-N+1}^{N} e^{i\theta_r 2n\pi} \mu_n(x),$$

which is a bounded measure supported on the single interval I_0 .

We now invoke a known result [3, p. 13]: since by Lemma 1, lim sup $n/k_n = 1$ in each S_r , the set S_r has Polya density 1, and so the exponentials $\{e^{ikx}\}$ for $k \in S_r$ are complete in continuous functions on any interval of length less than 2π , in particular on I_0 . By definition of the set $\{\lambda_k\}$ for $k \in S_r$ as a translate of S_r , the same is true of the exponentials $\{e^{i\lambda_k x}\}$, $k \in S_r$, and consequently the measure (2) on I_0 which annihilates them must vanish identically. We conclude

(3)
$$\sum_{n=-N+1}^{N} e^{i\theta_r 2n\pi} \mu_n(x) \equiv 0, \qquad x \in I_0,$$

for each r. Writing (3) with $r = \pm 1, \dots, \pm N$ yields a system of 2N linear equations for the 2N measures $\mu_n(x), -N+1 \le n \le N$, whose determinant is precisely $\Delta(\theta_1, \dots, \theta_N)$ and so, by Lemma 2, does not vanish. Thus the only solution to this system is $\mu_n(x) \equiv 0, -N+1 \le n \le N$, whence $\mu(x) \equiv 0$ by (1). This completes the proof of the theorem.

Remarks. 1. By an obvious modification of the proof, the exponentials $\{e^{i\lambda_k x}\}$ with $k \in S_r$ for r > 0 have the same completeness property.

2. We may give a constructive proof of the theorem along the same lines. Shifting each I_n to I_0 transforms the problems of approximating a continuous function on S by linear combinations of the exponentials $\{e^{i\lambda_k x}\}$ into that of solving a system of linear equations on I_0 with nonzero determinant, and thereby again reduces matters to approximating on I_0 by linear combinations of $\{e^{ikx}\}$ for $k \in S_r$.

BIBLIOGRAPHY

1. A. Beurling and P. Malliavin, On the closure of a sequence of exponentials on a segment, Multigraphed lectures, Summer Institute on Harmonic Analysis, Stanford University, Stanford, Calif., 1961.

2. J. P. Kahane, Sur la totalite des suites d'exponentielles imaginaires, Ann. Inst. Fourier (Grenoble) 8 (1958), 273-275.

3. N. Levinson, *Gap and density theorems*, Amer. Math. Soc. Colloq. Publ. Vol. 26, Amer. Math. Soc., Providence, R. I., 1940.

4. F. Riesz and B. Sz-Nagy, Functional analysis, Ungar, New York, 1955.

Bell Telephone Laboratories

1964]