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Introduction. For a given sequence {X&} of complex numbers, the 
problem of determining those intervals I on which the exponentials 
jgix&zj a r e complete in various function spaces has been extensively 
studied [3]. Since the problem is invariant under a translation of 7, 
only the lengths of I are involved, and attention has focused on the 
relation between these lengths and the density of the sequence {X&}. 
With the function space taken to be LP(I) for 1 ^p < <*>, or C(I), the 
continuous functions on 7, the general character of the results has 
been that there exist sparse real sequences (lim r~l (the number of 
|Xjfc| < r ) = 0 , for example) for which / can be arbitrarily long [2], 
but all such sequences are nonuniformly distributed ; when a sequence 
is sufficiently regular, in the sense that X& is close enough to k, the 
length of I cannot exceed 2x [4, p. 210]. Most recently, in a complete 
solution which accounts for all these phenomena, Beurling and 
Malliavin have proved that the supremum of the lengths of I is 
proportional to an appropriately defined density of {X&} [ l ] . 

The purpose of this note is to show that the situation is quite 
different when the single interval I is replaced by a union of intervals. 
Specifically, we will construct a real symmetric (or positive) sequence 
{Xfc} arbitrarily close to the integers, for which the corresponding ex
ponentials are complete in C(S), where 5 is any finite union of the 
intervals \x — 2nir\ <w — S, with integer n and S>0, and so has arbi
trarily large measure. Thus, for sets 5 more general than intervals, 
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it would seem that no relation can be expected between measure of S 
and density of {A/b}. 

Acknowledgment. I am very indebted to Professor Beurling for his 
interest and advice. 

Results. 

LEMMA 1. We may partition the positive integers into an infinité num
ber of disjoint sequences S r = {fenMn î» r = =l> 2, • • • , with the property 
that lim sup n/k^ = 1 for each r. 

PROOF. We will define Sr as the union (J™=1 aritr of disjoint blocks 
aitr of consecutive integers. To define o-»,r, we order the integer 
couples (i, r) with i, r ^ l , by increasing values of s = i+r, and for 
same values of s, by increasing i. We let cri,i = {l} and choose the 
remaining <r»,r consecutively in the order of the (i, r), letting each 
(rPfq begin with the first integer not included in the previously defined 
cr; we pick <rPtQ so long that if N is the number of integers in <rPtQ, 
k is the first of them, and M is the total number of integers in the 
(already determined) crjtQ with j<p, then (N+M)/(k+N—l) 
> 1 — 1/p. By this construction, whenever J$ in Sr coincides with the 
right-hand endpoint of a <r»,r we have n/k^^l — i/i, so that 
lim sup n/k^n = 1 for each r. Finally, the Sr are all disjoint and their 
union is all positive integers. Lemma 1 is established. 

LEMMA 2. With 0i, 02, • • • real numbers, set zk = ei27rek, and denote 
by A(0i, • • • , 0») the determinant whose 2jth row is s!!}"1, z"~2, • • • , zjn 

and whose (2j—l)th row is zjn+l, %~n+2, • • • , s$, with l^jûn. Then 
given e>0 we may choose 0i, 02, • • • with | 0t-| <e so that, for all n, we 
haveA(6h • • • , 0„)^O. 

PROOF. The condition |0*| <e is equivalent to S*£Y, with y an 
appropriate arc of \z\ = 1 . First, letting Z\ be any point of y other 
than z — 1 ensures A(0i) p^O. Then we observe that A(0i, • • • , 6n) can 
be expanded as a polynomial in zn and z"1, with leading coefficient 
A(0i, • • • , 0n-i). Assuming zi, • • • , zn_i have been chosen to satisfy 
the requirements of the lemma, this coefficient does not vanish, and 
so A(0i, • • • , 0n) considered as a function of zn is not identically zero; 
being analytic in zn it therefore cannot vanish everywhere for zn on y. 
Thus we may find a point ei2irdn G y such that when zn = ei2*0n

9 

A(0i, • • • , 0n)?*0. By induction, Lemma 2 is established. 

THEOREM. Given e>0 , there exists a symmetric real sequence {\k\l«> 
with |Xfc —&| <€ such that the f unctions ^e^hx\ are complete in continu-
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ous functions on every finite union of the intervals \x — 2mr\ <7r — 5, 
with integer n and S > 0. 

PROOF. We will partition the integers into disjoint subsets, shift 
each subset by a small amount, and let the sequence {A*,} consist 
of the points so obtained. Then we will show that completeness of the 
corresponding exponentials on unions of certain intervals is equiva
lent to completeness on a single interval of {eikx}, with k in one sub
set, and thereby reduce the theorem to a classical result. 

Let Sr, r= 1, 2, • • • , be the disjoint subsets of the integers denned 
in Lemma 1, and let S-r= {k\ —k G Sr}. Similarly, let 0r, r= 1, 2, • • -, 
be the numbers constructed in Lemma 2, and let 0_r= — 6r. Now for 
&GSV, r = ± l , ± 2 , • • • , set Xfc = fe+Ör, and Xo = 0. Then the sequence 
{X&Jüoo is symmetric and \\k~- k\ <e. 

To prove the theorem we must show that given N and ô>0 , the 
exponentials {^iXfca;| are complete in C(S)> where S==U^L_iv-fi •/», and 
In is the interval \x — 2mr\ <TT — 3, or equivalently [4, p. 115] that 
any bounded measure supported on S which annihilates these ex
ponentials must vanish identically. Accordingly, let /x(x) be such a 
measure, and denote by ixn(x — 2mr) the restriction of /x(x) to In. Then 
jjLn(x) is a bounded measure supported on Jo, and 

N 

(1) n(x) = X) MnO — 2nir). 
n=-2V+l 

Now by a change of variable, 

/
eil*xdn(x) = J2 e^k2nT I e^kxdfin(x), 

and if £G»Sr, e
i'Xk2nT — eidr2n'n' and does not depend on fe. Thus if /x(x) 

annihilates the exponentials {e****} for feG^V, so does 

N 

(2) 52 ei$r^fxn(x), 
n=-iV+X 

which is a bounded measure supported on the single interval Jo. 
We now invoke a known result [3, p. 13]: since by Lemma 1, 

lim sup n/kn— 1 in each 5 r , the set Sr has Polya density 1, and so the 
exponentials {eikx} for £ £ S r are complete in continuous functions 
on any interval of length less than 2x, in particular on Jo. By defini
tion of the set {X&} for k G Sr as a translate of Sr, the same is true of 
the exponentials {eiXjba;}, kÇîSr, and consequently the measure (2) on 
Io which annihilates them must vanish identically. We conclude 
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N 

(3) Z eie^iin{x) = 0, x £ h, 
n=-N+l 

for each r. Writing (3) with r = ± 1, • • • , ±iV yields a system of 2iV 
linear equations for the 2N measures fxn(x), — N-\-\SnSN, whose 
determinant is precisely A(0i, • • • , 6N) and so, by Lemma 2, does not 
vanish. Thus the only solution to this system is /*n(x)^0, — N+1 
Sn^N, whence /x(x)=0 by (1). This completes the proof of the 
theorem. 

Remarks. 1. By an obvious modification of the proof, the exponen
tials {e*x&a;} with kÇzSr for r > 0 have the same completeness property. 

2. We may give a constructive proof of the theorem along the 
same lines. Shifting each In to Jo transforms the problems of ap
proximating a continuous function on S by linear combinations of 
the exponentials {^^j into that of solving a system of linear equa
tions on Io with nonzero determinant, and thereby again reduces 
matters to approximating on I0 by linear combinations of {eikx} for 

kesr. 
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