A TWO-DIMENSIONAL SINGULAR INTEGRAL EQUATION OF DIFFRACTION THEORY¹

BY JAMES RADLOW

Communicated by A. Zygmund, February 28, 1964

The formulation of a problem in diffraction theory has led us to consider the two-dimensional singular integral equation

(1)
$$\iint_{Q_{13}} f(t_1, t_2) k(|x_1 - t_1|, |x_2 - t_2|) dt_1 dt_2 = 0$$

where: Q_{13} denotes the union of quadrants I, III; f is unknown, but must vanish on quadrants II, IV; the equation is valid only for $x = (x_1, x_2)$ in Q_{13} ; and k is the diffraction-theoretic kernel

(2)
$$k(x) = -(4\pi r)^{-1} \exp(-i\beta r)$$

with $r = +(x_1^2 + x_2^2)^{1/2}$ and β complex $[\text{Im}(\beta) < 0]$.

In earlier physical investigations, we had encountered variants of (1) in which the domains of integration and validity were (a) two contiguous quadrants (see [4]) or (b) one quadrant (see [5], [7]); and it is clear that the equation over three quadrants may be treated by methods applicable to the complementary case (b). Thus, the present study of (1) completes a theory of two-dimensional convolution-type equations with the diffraction-theoretic kernel k over quadrants of the x_1x_2 -plane. Since these equations generalize the one-dimensional convolution-type on the half-line (i.e., the classical equation of Wiener and Hopf [9]), the theory is a partial extension of Wiener and Hopf's ideas from one to two dimensions.

Our analysis may be divided into three parts:

I. **Preparatory.** The integral equation (1) is extended to X, the whole x_1x_2 -plane, whereupon the left side becomes a convolution (Wiener's "Faltung") while the right side h(x) is defined (but not known) on $X - Q_{13}$, and h = 0 on Q_{13} :

$$f * k = h.$$

The two-dimensional Laplace transformation ([1], Chapter VI of [2], or [3]) then maps (3) into the transform equation (capital letters denote transforms; $w = (w_1, w_2)$ denotes a point in a product-space

¹ This work was supported in part by the Office of Naval Research, under Contract No. Nonr 3360 (01).

of two complex variables, with $w_j = u_j + iv_j$ and j = 1, 2 here and in what follows):

$$(4) F(w)K(w) = H(w)$$

which is to be solved for the two unknown functions F, H.

It is known that $K(w) = (i/2)(w_1^2 + w_2^2 + \beta^2)^{-1/2}$; thus, K is analytic for $u = (u_1, u_2)$ in a product domain $B: W_1 \times W_2$, where the W_j are vertical strips interior to $|u_j| \le |\operatorname{Im}(\beta)|$. Assume next that F is a distribution (cf. [3, Proposition 4.2, p. 14]) representable as

$$(5) F(w) = P(w)G(w),$$

where P is a polynomial, and

(6)
$$G(w) = (\mathfrak{L}_1 + \mathfrak{L}_3)g(x),$$

the restricted Laplace transform \mathfrak{L}_n being defined by an integral over the closed nth quadrant:

(7)
$$\mathfrak{L}_n g = \int \int_{\Omega_n} g(x) \exp(-w \cdot x) dx_1 dx_2$$

 $(w \cdot x = w_1x_1 + w_2x_2)$. Finally, let g(x) exp $(-w \cdot x)$ be of bounded L_2 norm over Q_1 , Q_3 for u in the respective domains

$$(8.1) C_1: u_i > b_i > 0,$$

$$(8.2) C_3: u_i < -b_i < 0$$

with $C_1 \cap C_3$ empty, as indicated in (8.1), (8.2), while $C_1 \cap B$ and $C_3 \cap B$ are nonempty.

[Remark. If $C_1 \cap C_3$ is nonempty, $G \equiv 0$. The same situation is noted in [8], whose subject is the presently relevant one of characterizing two-variable Laplace transforms of functions with support in Q_{13} . Some of the considerations which arise are exemplified in the proof of Lemma II.2 below.] It may then be shown that:

STATEMENT I.1. F(w) and H(w) as well as K(w) are analytic for u in B.

STATEMENT I.2. $F(w) = F_1(w) + F_3(w)$, $H(w) = H_2(w) + H_4(w)$, where: subscripts n (n=1, 2, 3, 4) denote functions analytic for u in (B, n), while (B, n) signifies the convex closure of B and the nth quadrant of the u-plane.

II. Factorization is the key step as in [9], but the single factorization lemma of Wiener and Hopf's one-dimensional theory must now be replaced by two lemmas:

LEMMA II.1. K(w) may be uniquely expressed as the product of four

functions $M_n(w)$, analytic and nonzero for u in (B, n). [This is shown, and the $M_n(w)$ are explicitly calculated, in $[5, \S 5]$.]

LEMMA II.2. $K_{13}(w) = M_1(w) M_3(w)$ and $K_{24}(w) = M_2(w) M_4(w)$ are analytic and nonzero in the respective pairs of disjoint u-domains $(-\infty < v_j < +\infty \text{ throughout}) q_1, q_3 \text{ and } q_2, q_4, \text{ where we have (for any } \delta > 0)$

(9)
$$q_1: (u_1 + u_2) \ge (|\operatorname{Im}(\beta)| + \delta) \quad (u_j > 0)$$

and q_2 , q_3 , q_4 are successive reflections of q_1 in $u_2 > 0$, $u_1 < 0$, $u_2 < 0$.

PROOF. Introduce the function

(10)
$$\phi(x) = N_0(\beta r), \quad x \in Q_{13}$$
$$= 0, \quad x \in Q_{24}$$

where $N_0(\beta r)$ is the Bessel function of the second kind (Neumann's function). The image of ϕ under two-dimensional Laplace transformation is, as shown in [6],

(11)
$$\Phi(w) = 2i(w_1^2 + w_2^2 + \beta^2)^{-1}[-i + w_1s_2S_2 + w_2s_1S_1],$$

with

(11.1)
$$s_j = (w_j^2 + \beta^2)^{-1/2}$$
 $(s_j = \beta^{-1} \text{ at } w_j = 0)$

(11.2)
$$S_{j} = (2i\pi^{-1}) \log \left[\beta^{-1}(w_{j} + s_{j}^{-1})\right]$$

and, significantly,

(12)
$$\mathfrak{L}\phi(x) = 2\mathfrak{L}_1\phi(x) = 2\mathfrak{L}_3\phi(x).$$

As appears from (12), $\Phi(w) \equiv \mathcal{L}\phi(x)$ is analytic for u in q_1 and for u in q_3 . The same is true of $K_{13}(w)$, since it may be shown (by the reasoning of [5, §5]) that

(13)
$$K_{13}(w) = \exp \left[-\int_{-\infty}^{\beta} \Phi(w;\beta) d\beta \right]$$

where Φ is written $\Phi(w; \beta)$ to emphasize the dependence on β , and it is understood that β is allowed to vary in a small neighborhood of its fixed value for purposes of the integration. The assertion for K_{13} is therefore proved, and the proof for K_{24} follows by symmetry.

III. Solutions of the transform equation and the integral equation. Two theorems may now be proved without difficulty (the first requires only verification):

THEOREM III.1. The transform equation (4) has the solutions

$$(14.1) F(w) = c_0[K_{13}(w)]^{-1},$$

$$(14.2) H(w) = c_0 K_{24}(w)$$

where c_0 is an arbitrary constant [the same arbitrary constant in (14.1), (14.2)].

THEOREM III.2. The functions F, H of (14.1), (14.2) possess two-variable Laplace inverses f(x), h(x), and the latter pair are literal solutions of (3). [The function f(x) is of course a literal solution of (1), as well as of the extended equation (3).]

References

- 1. S. Bochner, Bounded analytic functions in several variables and multiple Laplace integrals, Amer. J. Math. 59 (1937), 732-738.
- 2. S. Bochner and W. T. Martin, Several complex variables, Princeton Univ. Press, Princeton, N. J., 1948.
- 3. J. Leray, Hyperbolic differential equations, lecture notes, Inst. for Advanced Study, Princeton, N. J., 1954.
- 4. J. Radlow, Diffraction of a dipole field by a unidirectionally conducting semi-infinite screen, Quart. Appl. Math. 17 (1959), 113-127.
- 5. —, Diffraction by a quarter-plane, Arch. Rational Mech. Anal. 8 (1961), 139-158.
- 6. ——, On the double Laplace transforms of some Green's functions, J. Math. and Phys. 38 (1959), 203-205.
- 7. ——, Diffraction by a right-angled dielectric wedge, Internat. J. Eng. Sci. (to appear).
- 8. ——, A two-dimensional version of Laplace's integral equation, Abstract 603-141, Notices Amer. Math. Soc. 10 (1963), 474.
- 9. N. Wiener and E. Hopf, Über eine Klasse Singulärer Integralgleichungen, S.-B. Berlin Akad. Wiss. (1931), 696-706.

PURDUE UNIVERSITY