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The formulation of a problem in diffraction theory has led us to 
consider the two-dimensional singular integral equation 

(1) I I f(h, t2)k( | a* — /i | , | %2 — h | )dhdt2 = 0 
J J Qn 

where: Qn denotes the union of quadrants I, I I I ; ƒ is unknown» but 
must vanish on quadrants II , IV; the equation is valid only for 
x— (xi, x2) in <2i3*> and k is the diffraction-theoretic kernel 

(2) k(x) = - (47TT)-1 exp(-i/3r) 

with r = + ( x ? + 4 ) 1 / 2 and 0 complex [Im(j8) < 0 ] . 
In earlier physical investigations, we had encountered variants of 

(1) in which the domains of integration and validity were (a) two 
contiguous quadrants (see [4]) or (b) one quadrant (see [5], [7]) ; and 
it is clear that the equation over three quadrants may be treated by 
methods applicable to the complementary case (b). Thus, the present 
study of (1) completes a theory of two-dimensional convolution-type 
equations with the diffraction-theoretic kernel k over quadrants of 
the Xix2-plane. Since these equations generalize the one-dimensional 
convolution-type on the half-line (i.e., the classical equation of 
Wiener and Hopf [9]), the theory is a partial extension of Wiener and 
Hopf's ideas from one to two dimensions. 

Our analysis may be divided into three parts: 

I. Preparatory. The integral equation (1) is extended to X, the 
whole XiX2-plane, whereupon the left side becomes a convolution 
(Wiener's "Faltung") while the right side h(x) is defined (but not 
known) on X — <2i3, and h = 0 on Qn: 

(3) f*k = h. 

The two-dimensional Laplace transformation ( [ l ] , Chapter VI of 
[2], or [3]) then maps (3) into the transform equation (capital let­
ters denote transforms; w= (wh w2) denotes a point in a product-space 

1 This work was supported in part by the Office of Naval Research, under Contract 
No.Nonr3360(01). 
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of two complex variables, with Wj — Uj+ivj and j = l, 2 here and in 
what follows) : 
(4) F{w)K{w) = H(w) 

which is to be solved for the two unknown functions F, H. 
I t is known that K(w) = (i/2)(wl+w2

2+P2)-112; thus, K is analytic 
for u~(uh u2) in a product domain B: W1XW2, where the Wj are 
vertical strips interior to \UJ\ ^ | l m ( / 3 ) | . Assume next that F is a 
distribution (cf. [3, Proposition 4.2, p. 14]) representable as 

(5) F(w) = P(w)G(w), 

where P is a polynomial, and 

(6) Giw) = (JBx + £«)g(*), 

the restricted Laplace transform <£„ being defined by an integral 
over the closed nth quadrant: 

(7) £ng = I I g(#) exp(—wx)dxidx2 
J J Qn 

(wx = WiXi+w2x2). Finally, let g(x) exp ( — w-x) be of bounded L2 

norm over Q±, Qz for w in the respective domains 

(8.1) C i : % > J y > 0 , 

(8.2) C 3 :% < - bj < 0 

with CiP\C3 empty, as indicated in (8.1), (8.2), while CiCMB and 
CzC\B are nonempty. 

[REMARK. If C\C\Cz is nonempty, G^O. The same situation is 
noted in [8], whose subject is the presently relevant one of char­
acterizing two-variable Laplace transforms of functions with support 
in Qiz. Some of the considerations which arise are exemplified in the 
proof of Lemma II.2 below.] It may then be shown that : 

STATEMENT 1.1. F(w) and H(w) as well as K(w) are analytic for u 
in B. 

STATEMENT 1.2. F(w) = Fx{w) + Fz(w), H(w) = H2(w) + HA(w), 
where: subscripts n ( » = 1 , 2, 3, 4) denote functions analytic for u 
in (B, n), while (B} n) signifies the convex closure of B and the wth 
quadrant of the w-plane. 

II . Factorization is the key step as in [Q], but the single factoriza­
tion lemma of Wiener and Hopf 's one-dimensional theory must now 
be replaced by two lemmas: 

LEMMA ILL K(w) may be uniquely expressed as the product of f our 
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functions Mn(w), analytic and nonzero for u in (B, n). [This is shown, 
and the Mn(w) are explicitly calculated, in [5, §5].] 

LEMMA 11.2. Kn(w) = Mi(w) Ms(w) and Ku(w) = M2(w) MA(w) are 

analytic and nonzero in the respective pairs of disjoint u-dornains 
(— oo <^Vj<^Jr oo throughout) qi, q$ and q2, q^ where we have (for any 
5>0) 

(9) qn (ux + u2) g ( | Im (/3) | + Ô) (uj > 0) 

and q2} qz, qt are successive reflections of q\ in u2>0, Ui<0, w2<0. 

PROOF. Introduce the function 

4>(x) = Notfr), x G Qn 

= 0, X G (?24 

where No(/3r) is the Bessel function of the second kind (Neumann's 
function). The image of <f> under two-dimensional Laplace transforma­
tion is, as shown in [6], 

2 2 2 — l r -, 

(11) $(w) = 2i(wi + w2 + 13) [•— i + wis2S2 + w2siSi\, 

with 
2 2 1/2 1 

(11.1) sj = (wj + /3) (s, = 13 at Wj = 0) 

(11.2) Si = (HIT'1) log \f\w, + sj1)] 

and, significantly, 
(12) £<j>(x) = 2£KI>(X) = 2£^(x). 

As appears from (12), 3>(w)^£ct>(x) is analytic for u in qx and for u 
in #3. The same is true of Ku(w), since it may be shown (by the reason­
ing of [5, §5]) that 

(13) Ku(w) = exp | - ƒ $(w; p)dfi] 

where 3> is written <£>(w; /3) to emphasize the dependence on /3, and it 
is understood that /3 is allowed to vary in a small neighborhood of its 
fixed value for purposes of the integration. The assertion for K\$ is 
therefore proved, and the proof for K2± follows by symmetry. 

III. Solutions of the transform equation and the integral equation. 
Two theorems may now be proved without difficulty (the first re­
quires only verification) : 
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THEOREM I I I . 1. The transform equation (4) has the solutions 

(14.1) F(w) = co[Ku(w)]-\ 

(14.2) H(w) = c o ^ W 

where cQ is an arbitrary constant [the same arbitrary constant in (14.1), 
(14.2)]. 

THEOREM III.2. The functions F, H of (14.1), (14.2) possess two-
variable Laplace inverses f (x), h(x), and the latter pair are literal solu­
tions of (3). [The function f {x) is of course a literal solution of (1), as 
well as of the extended equation (3).] 
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