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This announcement is the sequel to the announcement Geometry of 
immersions. I, which appeared in the September 1963 issue of this 
journal. In the present announcement we develop the characteristic 
class theory of Thorn (see [ô], [7]) to include some situations of differ­
ential geometric interest. We then apply these techniques of differ­
ential topology to some problems of extrinsic differential geometry. 
Most notable among them is §6 which deals with the problem of 
counting umbilic points on an immersed hypersurface. 

In this announcement we draw freely on the definitions contained 
in our first announcement. Full details will appear in a separate pub­
lication. 

1. G-structures on vector bundles. Their singularities and char­
acteristic classes. 

DEFINITION 1.1. Let fa:G—»GL(£, R) and fa: H-*GL(q, R) be 
faithful smooth representations of the Lie groups G and H in GL(£, R) 
and GL(g, R) respectively. This induces in a natural way an action 
of GXH on H o m ( ^ , Rq). Let K be a regular manifold collection of 
submanifolds of Hom( i^ , Rq). Then K is called a model GXH singu­
larity with respect to fa and 02, if K is invariant under the action of 
G X f f o n H o m ^ , » ) . 

DEFINITION 1.2. Let £=(7r: E—>X) be a smooth vector bundle of 
fiber dimension q. Let irE: PE—>X be the principal GL(g, R) bundle 
associated to E. Let G be a Lie group. Let 4>: G—*GL(g, R) be a faith­
ful representation of G. A (G, fa-structure on E is given by a principal 
G-bundle TTG' PG—*X> and a smooth mapping <£: PG~*PE such that 

( a ) TTJ& •<? = *•<?, 

(b) $ is smooth and 1-1, 
(c) for each UGPG and gÇzG, <t>{u)fag) = ^>{ug). 
REMARK. A (G, fa -structure on a vector bundle £=(7r: E—>X) of 

fiber dimension q, gives rise to a reduction of the structural group 
Gh(q, R) to 0(G). Hence the representation <ƒ> allows us to consider 
the vector bundle $ as a vector bundle associated with the principal 
G-bundle P G , because the G action on the fibers will be linear. 

1 This research was supported by the following contracts: NONR-266(57) and 
NSF-G-19022. It consists of part of the author's doctoral dissertation at Columbia 
University, 1963. 
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DEFINITION 1.3. Let T:E-~>X and -K'\E'-*Y be smooth vector 

bundles of fiber dimension p and q respectively. Let there be given a 
(G, <£i) -structure on E and an (if, 02)-structure on E'. Let K be a 
model GXH singularity with respect to the representations, <j>\ and 
<f>2. Let Hom(£, E') denote the vector bundle over XX Y defined in 
§2 of [2]. Then the (G, </>i)-structure on E and the (if, 02)-structure 
on E' induce a (GXH, <j>l Xfa)-structure on Hom(E, Ef). Hence 
we can consider Hom (E, E') as a vector bundle with fiber Hom(i^p, Rq), 
structural group GXH, and base XXY. Hence K defines a regular 
manifold collection K(X, F), of submanifolds of Hom(E, E'). Let 
K^KX\J • • • \JKsy then K(X, Y)=K1(X1 F ) U • • • ̂ JKS(X, F), 
and the codim(iQ = c o d i m ( ^ ( X , F)) . K(X, Y) is called the GXH 
singularity defined by the (G, </>i)-structure on E, the (H, ^-structure on 
E'', awd /feö model GXH singularity K. 

DEFINITION 1.4. Let ir:E-*X and -K'\E—>Y be smooth vector 
bundles. Let there be given a (G, 0i)-structure on E and an (£Z, 02)-
structure on E' . Let K be a model GXH singularity, and let i£(X, F) 
be the GXH singularity defined by the G-structure on E the H-
structure on E'', and the GXH singularity K. Let f:E—*E' be a 
smooth vector bundle homomorphism covering/: X—>Y. This induces 
a m a p / : X—»Hom(E, E') defined by ƒ(#) ^ / J E ^ G H o m ^ , £/(*)), for 
x £ X . We say x is a K-singular point of f if }(x)ÇzK(X, F). We say 
that ƒ displays the singularity transver sally if / (X) meets i£(X, F) 
transversally. The set }~l(K(X, Y)) = SK(f) is called the set of K-
singular points of f. If ƒ displays K transversally then SK(J) is a mani­
fold collection of the same codimension as K(X, F). 

Let the coefficient ring for all characteristic classes be Z2. 
DEFINITION 1.5. Let T: E—>X be a smooth vector bundle. Let 

na' PG-^X be the principal G-bundle given by a (G, <£)-structure on 
E. The characteristic classes of the G-structure (G, </>) on E are defined 
to be the characteristic classes of P Q. If the maximal compact sub­
group Gc of G is the orthogonal group 0(k), then the characteristic 
classes of the G-structure are just the Stief el-Whitney classes of P Q. 
These will be called the Stief el-Whitney classes associated with the 
(G, <f))-structure on E. We will denote these classes by Wf(E) EH*(X). 

With these definitions we get the following generalizations of the 
theorem of Thorn (see [ó], [7]). 

THEOREM 1.6. (1) Let £=(7r:E—»X) and r) = (Tr: £ ' - *F ) be smooth 
vector bundles of fiber dimension p and q respectively. Let £ be given a 
(G, (pi)-structure and rj an (H, ^-structure. Assume the maximal com­
pact subgroups Gc and Hc are respectively 0(k) and 0(t). 



602 E. A. FELDMAN [July 

(2) Let K = Ki^J • • • \JKa be a model GXH singularity of co-
dimension s. Assume that K carries a fundamental class, that K is closed 
in Hom( i^ , RQ), and that Ki is a regular submanifold. (These are all 
satisfied if K is a real algebraic variety.) 

(3) Let ƒ: E—>Er be a smooth homomorphism of vector bundles covering 
ƒ: X—»F. Assume that f displays the singularity K transver sally. 

Then Sx(/) , the manifold collection of K singular points off carries a 
fundamental class [Sic(/)]. Let i: SK(f)—>X be the inclusion map and 
let Dx be Poincaré duality in X. There exists a polynomial P, which is 
independent of ƒ, such that 

Dxi*[SK(f)] = P(W?(.E),]*wf(E)). 

COROLLARY 1.7. If the PH of the H-structure in 1.6 is isomorphic to 
the trivial bundle, then the class \SKU)\ is independent off. 

REMARK. (1) An exact analogue of 1.6 can be proven for arbitrary 
G- and if-structures. However it is the less general theorem above 
that we apply in what follows. 

(2) I. Porteous (see [l]) has calculated the polynomials of Theo­
rem 1.6 in the following case. Let n = mm(p, q), let G = GL(p, R), 
let H= GL(#, R), let 0i = id G and let <j>2 = idn. Let us denote by Za the 
model GXH singularity defined by 

Za = (<r G. H o m ( ^ , RQ) | rank <r = n — a). 

Then Za = öa^af Za'. Za is a real algebraic variety and therefore satis­
fies all the hypotheses of 1.6. Porteous calculates the universally de­
fined polynomial for the singularity Za(X, Y) under a slightly differ­
ent transversality assumption. It is not hard to show that the trans-
versality assumption of 1.6 is stronger than Porteous', and hence his 
formulas hold. 

2. Applications to osculating maps. Let us preserve the notation of 
1.6. Assume that dim Z = » and that dim Y=N.Let(D(k\k = l,2, • • •) 
be a sequence of &th order symmetric linear connections on F. Let us 
assume that E = TP(X) and that E' = Tx( Y). Let G = Jp(n), the group 
of invertible £-jets of maps from Rn into Rn which send the origin into 
the origin. The differential structure on X endows TP(X) with 
a canonical Jp(n)-structure. Let there be given some arbitrary 
if-structure on 7 \ (F) . Let K be a model Jp(n)XH singularity with 
respect to the given structures. L e t / : X—>F be a smooth map. The 
vector bundle homomorphism that we are interested in studying is 
the £th order osculating map VPTP(J): Tp(X)—*Ti(Y). 
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The following proposition shows that condition 3 of Theorem 1.6 
is not very restrictive in the case outlined above. 

PROPOSITION 2.1. Let X and Y be smooth manifolds of dimension n 
and N respectively. Let (D^k\ k= 1, 2 • • • ) be a sequence of kth order 
symmetric linear connections on Y. Let there be given an H-structure on 
T\(Y) and a G-structure on TP(X). Let K be any model GXH singular-
ity, and let K(X,Y) be the corresponding singularity induced by the G-
structure, the H-structure and K. Then the set of f£:C(X, Y) such that 
(S7pTp(f))*(X) meets K(X,Y) transversally is dense in C(X, Y). 

The remainder of this announcement will deal with the applications 
of 2.1 and 1.6 to some concrete problems of "affine" and "Rie-
mannian" singularities. 

3. Inflection points. We will fix the following notation for the next 
two sections. Let X and Y be smooth manifolds of dimension n and 
N respectively. Let (D(/fc), fe = l, 2 • • • ) be a sequence of feth order 
symmetric linear connections on F. Let v{n, p) denote the fiber di­
mension of TP(X). Assume that N>v{n, p). 

DEFINITION 3.1. Let ƒ : X—>Y be a pih order nondegenerate immer­
sion of X in F, and let NPJ,Y(X) be the pth order normal bundle of 
X in F with respect to ƒ. 

Let vPtf\ Ov+1Ti(X)-^Np,f,Y(X) be the pth order normal form of/. 
xÇiX is said to be a pth order inflection point of f if pPtf is not of maxi­
mal rank on O + ^ X ) * . 

Let IP(X, F) denote the space of pth. order nondegenerate immer­
sions of X in F. Let Si(pp,f) = ( x £ X | r a n k (ppJ) on 

0*>+lTi(X)x = minOK», p + 1) - v(n, p), N - v(n, p)) - i). 

THEOREM 3.2. (a) There exists an open dense subset DQIP(X, Y) 
such that iff&D then the set of pth order inflection points off is a mani­
fold collection If~Si(vpj)yj • • • ^JSU{PPJ) of submanifolds of X. 
Furthermore we have the following results. 

(b) Let N^p(nt p + l)+n or let p(n, p)<N^p(n, p + l)-n. If 
f (£D then I/ = 0 and hence f is a p + 1 order nondegenerate immersion. 

(c) Let v{n, p + l)-n<N<v(n, p + l)+n. Let fGD. [Si(vftP)]~ 
= Si(vp,f)\J • • • \JSk(pp,f). Then [Si(ppj)]~~ carries a fundamental 
class [Si(pp,f)]~. Let Dx be Poincaré duality in X and let j : Si[0v,/)]~ 
C I be the inclusion map. Then 

Dxj*[SAvv,f)Y = P(Wa(X),f*Wb(Y)), 

where P is a universally defined polynomial whose definition is inde-
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pendent of f, and where Wa(X) and Wb(Y) are the Stief el-Whitney 
classes of X and Y respectively. 

REMARK. The polynomial P can be computed from Porteous' for­
mulas, Whitney duality, and the formulas for the Whitney classes of 
the tensor product of vector bundles. 

The following examples are easy consequences of the above theo­
rems. 

PROPOSITION 3.3. Let S1 be the circle. Let Y be unorientable. Let 
f<E.IN~l(S\ Y). Assume that f*Wx(Y) 9*0. Then f has an (N-l)st 
order inflection point. If N—2 this tells us that any immersion f of the 
circle in an unorientable two manifold has an inflection point if 

PROPOSITION 3.4. Let dim X = 2, and let us be concerned with first 
order inflection points. We will endow the target manifold Y with an 
arbitrary symmetric connection. 

(a) Let X = P2(R) and let F = P 6 ( P ) . Let ƒ: P2(R)-*P6(R) be the 
natural embedding of P2 as a projective plane. Then any immersion of 
P2(R)-^Pe(R) homotopic to ƒ has inflection points. The same fact is 
true for the natural embedding of P 2 in P\. 

PROPOSITION 3.5. Let X = P2(C). We will again be concerned with 
first order inflection points. We again endow the target manifold Y with 
an arbitrary symmetric linear connection. 

(a) If Y=R17 (in fact any 17 manifold Y with Wi(Y)=Q will 
suffice)y then any immersion of P2(C) in Y must have inflection points. 

(b) If Y=RU, then for any immersion of P2(C) in Ru, there exists 
a point xÇzP2(C) such that dim(ker(^u(x)) ^ 2 . 

Many more examples of this type can be given so we will stop here. 

4. Totally geodesic points. 
DEFINITION 4.1. Let N>v{n, p), and l e t / : X—>Y be a pth order 

nondegenerate immersion. Let NpjtY(X) be the pth order normal 
bundle of X in F with respect t o / , and let vPtf: Ov+lTi(X)->NpJtY(X) 
be the pth. order normal form. x £ X is said to be a pth order totally 
geodesic point with respect to the connections of the immersion ƒ, if 
vp,f is the zero map on the fiber Op+lTi(X)x. If this true at all the 
x £ X , ƒ is called a pth order totally geodesic immersion. 

REMARK. In the classical case p = 1 this definition is well known to 
be equivalent to the usual definition. 

PROPOSITION 4.2. Let N>v(n, p), and let dim X^2. Let I*>(X, Y) 
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be the set of pth order nondegenerate immersions of X in Y. Then the 
set of fÇiIp(X, Y) without pth order totally geodesic points is open and 
dense in IP(X, Y). 

5. Parabolic points. We will adopt the following notation for the 
next two sections. X will denote an w-dimensional manifold. Let 
Y = Rn+1 and endow Y with its usual Riemann (Euclidean) metric 
( , ). Let I (X, Rn+l) denote the space of immersions of X in i?n+1. 
Iifei(X, Rn+1) denote by w2T2(f) : r 2 ( X ) - > r 1 ( ^ + 1 ) the second order 
osculating map of ƒ with respect to the usual connection on Rn+1. 
Denote by {w2T2)*(f): X-^Hom(T2(X) .T^Y)) the section of 
H o m ( r 2 p O , Ti(Rn+1)) over the graph of/, determined by the homo-
morphism w2T2{f). 

DEFINITION 5.1. Let fEI(X, Rn+1). Let JV>(X)'and vf:0*Ti(X) 
—>Nf(X) be the normal bundle and the normal form of the immersion 
ƒ respectively. Let x&X and U be a neighborhood of x in which we 
can define a unit normal vector field N to f(U). For every point 
x'ÇzU we can define a self adjoint linear transformation SN(*')\ 

TI(X)X'-->TI(X)X> defined by the formula 

{SN{X>)U} V) = (vf(u, v), N(x')), u,vG Ti(X)x>. 

Let KNJ(X') = Det(5jV(a:'))- KNtf(x') is called the Gauss-Kronecker 
curvature of f at x' with respect to the normal direction N(x'). 

DEFINITION 5.2. x'GX is called a parabolic point of the immersion 
ƒ if KNJ(X')—0. This is clearly independent of the unit normal 
chosen, and depends only upon the immersion ƒ and the Riemann 
structure on Rn+l. 

PROPOSITION 5.3. Let fEI(X, Rn+1). Let GN(f): X->Pn(R) be the 
Gauss normal map of f. x is a parabolic point of f if and only if x is not 
a regular point of Gi\r(/). 

THEOREM 5.4. There exists a model J2(n)XO(n+l) singularity 
P C Hom(jRv<n' *>>, Rn+l) with the following properties, 

(a) P is a real algebraic variety of codimension 1. 
(b) Let P(X, Rn+1) be the singularity induced by the canonical J2(n)-

structure on T2(X), the Riemann structure on Rn+1
i and the model singu­

larity P. Then xÇzX is a parabolic point if and only if (w2T2)^ (f)(x) 
GP(X, R+i). 

(c) Let DP*=(JEI(X, Rn+1)\(w2T2y(f) take the singularity 
P(X, Rn+1) transver sally). The elements of Dp are called parabolic ge­
neric immersions. The parabolic generic immersions are open and dense 
inI(X,R"+l). 
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THEOREM S.S. Let / £ I ( X , Rn+1). Let SP(J) be the set of parabolic 
points of f y let i: Sp(f)—>X be the inclusion map, and let Dx be Poincarê 
duality in X. If f ED q then Sp(f) is a manifold collection and carries a 
fundamental class [Sp(f) ]. Furthermore we have the formula, DXH [Sp(f) ] 
= p(n)Wi(X), where p{n) is a Z2 valued function depending on the 
dimension n of X alone. 

5.5 and a deeper analysis of the singular variety yield the following 
corollaries. 

COROLLARY 5.6. (a) Let X be a compact orientable n-manifold. Let 
f EL) p. Then the set of parabolic points of f is homologous to zero. 

(b) Let X be a compact 2-manifold. Let f ED p. Then the set of para­
bolic points Sp(f) is a set of disjoint circles which when considered as a 
homology class are homologous to zero. 

(c) Let X be an odd dimensional, compact, unorientable manifold. 
Then any immersion of X in Rn+1 has parabolic points. 

6. TImbilic points. 
DEFINITION 6.1. Let ƒ G ICY, Rn+1). Let xEX and let U be a suffi­

ciently small neighborhood of x so that we can define a unit vector 
field N normal to ƒ(£/)• Let SN^: Ti(X)x—>TI(X)X be the self adjoint 
linear transformation defined in 5.1. The eigenvalues ki(x) of this 
operator are called the principal curvatures of f at x. These numbers 
are uniquely determined up to sign in the sense that if we picked — N 
instead of N we would merely change the sign of ki(x). 

DEFINITION 6.2. Let fEI(X, Rn+l). A point xEX is called an 
umbilic point of the immersion f if all the principal curvatures of ƒ at 
x are equal. I t is clear that the property of being an umbilic point is 
independent of the unit normal chosen. 

THEOREM 6.3. There exists a model J2(n)XO(n + l) singularity 
U C HomCR"(w' 2), Rn+l) with the following properties. 

(a) U is a real algebraic variety of codimension 

n(n + 1) 

2 

(b) Let U(X, Rn+1) be the singularity induced by the J2 (n) -structure 
on T2(x) the Riemann structure on Rn+1, and the model singularity U. 
Then xEX is an umbilic point if and only if (w2T2)* (ƒ) G U(X, Rn+l). 

THEOREM 6.4. Let d i m Z ^ 3 . Then the set of f&I(X, Rn+1) such 
that f has no umbilic points is open and dense in I (X, jRn+1)-
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THEOREM 6.5. Let X be a compact orientable 2-manifold. Then there 
exists an open dense subset DUQI(X1 Rz) with the following properties. 
Iff&Du then 

(a) the set of umbilic points Su(f) is a finite set of points, and 
(b) (the number of umbilic points) mod 2 = 0. 

COROLLARY 6.6. Let X be a compact orientable 2-manifold. Assume 
that the Euler characteristic x P Q ^ O . Let DuC.I(X, Rz) be the open 
dense subset of 6.5. If' fÇzDu, then f has at least two umbilic points. 

REMARK. This last corollary gives a partial answer and generaliza­
tion to a conjecture of C. Carathéodory. Carathéodory conjectured 
that any convex embedding of S2 in Rz has at least two umbilic 
points. In the case where the embedding is real analytic the conjecture 
has been settled in the affirmative, however the Ck case (kS <*>) is 
still an open problem. 

Added in proof. Theorem 6.5 can be strengthened to the following 
theorem. 

THEOREM 6.7. Let X be a compact 2-manifold. Then there exists an 
open dense subset DuQI(X, Rz) with the following properties. IffÇzDu 
then, 

(i) the set of umbilic points off is a finite subset of X, and 
(ii) the index of each of these umbilic points is ± J. 

Hence we have that (the number of umbilic points of f)^2\x(X)\% 

where x P O is the Euler characteristic. 
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