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Let 3D be a domain in the 3-dimensional Euclidean space Ez and 
let (B be its boundary. Consider the initial-boundary value problem 
for the wave equation 

(1) V2^ - uu = 0, x G 3D, / > 0, 

(2) u(x, 0) = f{x), ut(x, 0) = g(x), * G 3D, 

(3) u(x, t) = 0, x G (B, t > 0, 

where x= (xi, x2> x%) and ƒ and g are functions defined in 3D. It is well 
known that if 3D = E3 and the initial data ƒ and g have compact sup
port then, at each point x, the solution u(x, t) is zero after a finite 
time. 

Morawetz [ l ] showed that if 3D is the exterior of a smooth bounded 
star-shaped body and the initial data have compact support then u 
at each fixed point decays at least as fast as tr1. Zachmanoglou [2] 
showed that the result of Morawetz is true even when the boundary 
(B extends to infinity and the initial data do not have compact sup
port but they satisfy certain conditions at infinity. 

Lax and Phillips [3] showed that if 3D is the region exterior to a 
finite number of finite bodies then, at each point, u goes to zero. They 
showed that this is also true when the Dirichlet boundary condition 
(3) is replaced by the Newmann boundary condition 

du 
(4) — (x,t) = 0, x G (B, t > 0. 

dn 

Lax, Morawetz and Phillips [4] combined the result of Morawetz 
with the methods of Lax and Phillips to show that u at each point 
decays exponentially when 3D is the region exterior to a bounded 
smooth star-shaped body and the initial data have compact support. 
It is the purpose of this note to show that this result is not generally 
true when the boundary (B extends to infinity and has a corner, even 
though the complement of 3D is star-shaped. 

Let 3D be a domain bounded by two planes intersecting at an angle 
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a. When a = 7r/fe, fe=l, 2, • • • , the solution of the initial-boundary 
value problem (with either of the boundary conditions (3) or (4)) is 
easily obtained using the reflection principle. I t is the sum of the 
direct wave and 2& — 1 reflections. If the supports of the initial data 
ƒ and g are contained in a sphere with center at the origin x — 0 (lo
cated on the line of intersection of the two planes) and radius R then, 
at each point x, u(pc, 0 = 0 when t> \x\ +R. Whena^ir/k the solution 
is more complicated. 

Let p, <£, z be cylindrical coordinates with the 2-axis coinciding with 
the line of intersection of the two planes, one plane at <fi = 0 and the 
other at </> = a. The following solution of the initial-boundary value 
problem (1), (2), (3) or (4) with ƒ = 0 was derived from the solution 
of the "pulse" problem obtained by Oberhettinger [S]: 

1 r n2 — 
U(X, t) = E b{t- Rn )g{x')dV' 

4:TTtJ 3D n-nx 

1 C m2 4-

<5) + - L Z 8(t - RZ)g(x')dV' 
<±irt J 3D m,=m.-, 

- - f 
brtJ 3D 

1_ r F(a, </> - *', 0) + F(a, <t> + <j>', 0) 

8ira J £> pp' sinh 0 

•E[f - (p + p'Y - (z - zy)g(x')dV' 

where p, <p, z (p', <p', z') are the cylindrical coordinates of the point 
x (x') ; 5(f) is the Dirac S-function; H(t) is the Heaviside unit function 
( = 0 if < < 0 a n d = 1 itt^O); 

Rn = [P2 + P'2 + (z- z'Y - 2Pp' cos(<j> -+' + 2cm)]1'2; 

Rt = [P2 + P'2 + (2 - z')2 - 2Pp' cosfa + 4>' + 2am)]1 '2; 

n = _ |> + * ~ *"] 

r v - <t> + <t>"\ 
W 2 = L 2a J ' 

"2=L"~2T~ J' 
where [#] = largest integer less than or equal to /; 
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2pp' cosh p = t2 - p2 - p'2 - (2 - s ')2; 

sin — (TT - 0) 

n«,o,p) = 
cosh ( — jö J - cos — (TT - 0) 

(6) \ « / L a ' J 

sinT— (TT + 0)1 

+ 
cosh f — j8 J - cos — (TT + 0) 

The top sign ( —) corresponds to the boundary condition (3) while 
the bottom sign ( + ) corresponds to the boundary condition (4). 

The terms in the first and second line of equation (5) represent the 
direct and reflected waves while the third line represents the diffracted 
wave. We assume from now on that g has compact support. Then it is 
easily seen that at each point x the direct and reflected waves are zero 
after a finite time. When a = ?r/fe, then F(ir/kf d, jS) = 0 so that there 
is no diffracted wave. When a^ir/k the diffracted wave is generally 
present and we will show that at each point it may decay like a nega
tive power of t depending on the angle a. 

In particular let a = 2ir/(2k + 1). Consider first the case of the 
boundary condition (3). Then for fixed x with <t> — a/2 = ir/{2k-\-\) 
and sufficiently large t, 

u(p, a/2, 2, t) 

2k + 1 r cos[(& + 1/2)0"] cosh[(£ + 1/2)13] 2k + l r 
4TT2 J 2D cosh2 [(* + 1/2)0] - sin2 [(* + 1/2)*"] 

pp' sinh p 
dV' 

where 0 / /=<^ / — a/2. In view of equation (6) it follows easily that in 
general u(p, a/2, z, t) decays like r~(2&+3). 

For the case of the boundary condition (4), u(pf 0, z, t) is given by 
the right-hand side of equation (7) with 4>" replaced by <j>'. Hence in 
general u(p, 0, z, t) decays again like t~^2k+z\ 
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