A GENERALIZATION OF THE HILTON-MILNOR THEOREM

BY GERALD J. PORTER ${ }^{1}$
Communicated by J. Milnor, November 19, 1964

The Hilton-Milnor theorem states that $\Omega \mathrm{V}_{i=1}^{n} \Sigma X_{i}$ is homotopy equivalent to a weak infinite product, $\prod_{i=1}^{\infty} \Omega \Sigma X_{i}$, where each $X_{i}, i>n$, is a smash product of the X_{i} 's, $i \leqq n$. In this note we extend this theorem to the 'wedges' lying between $\mathrm{V}_{i=1}^{n} \Sigma X_{i}$ and $\prod_{i=1}^{n} \Sigma X_{i}$.

It will be assumed that all spaces are connected countable CWcomplexes with base points. $T_{i}\left(X_{1}, \cdots, X_{n}\right)$ is the subset of $X_{1} \times \cdots \times X_{n}$ consisting of those points with at least i coordinates at base points. T_{0} is the cartesian product and T_{n-1} is the space studied by Hilton and Milnor. T_{n-1} will also be denoted by $\bigvee_{j=1}^{n} X_{j}$. The smash product $\Lambda\left(X_{1}, \cdots, X_{n}\right)$ is the quotient space $T_{0}\left(X_{1}, \cdots, X_{n}\right) / T_{1}\left(X_{1}, \cdots, X_{n}\right)$. Define $X^{(n)}$ inductively by $X^{(0)}=S^{0}$ and $X^{(n)}=\Lambda\left(X^{(n-1)}, X\right)$, for $n>0$.

The n-fold suspension, $\Sigma^{n} X$, is defined to be $\Lambda\left(S^{n}, X\right)$. The loop space of $X, \Omega X$, is the set of maps, $f: I \rightarrow X$, such that $f(0)=f(1)=*$. We shall abbreviate $\left(\Sigma X_{1}, \cdots, \Sigma X_{n}\right)$ and $\left(\Omega X_{1}, \cdots, \Omega X_{n}\right)$ by $\Sigma\left(X_{1}, \cdots, X_{n}\right)$ and $\Omega\left(X_{1}, \cdots, X_{n}\right)$, respectively.

Theorem 1. $\Omega T_{i} \Sigma\left(X_{1}, \cdots, X_{n}\right)$ is homotopy equivalent to a weak infinite product, $\prod_{j=1}^{\infty} \Omega \Sigma X_{j}$, where each X_{j} is equal to $\Sigma^{r} \wedge\left(X_{1}^{(11)}, \cdots, X_{n}^{\left(y_{n}\right)}\right)$ for some $(n+1)$-tuple, $\left(r, j_{1}, \cdots, j_{n}\right)$, depending upon j. Moreover, the set of $(n+1)$-tuples over which the product is taken is computable.

If $i=n-1$, Theorem 1 is the Hilton-Milnor theorem. It was proven in [1] by Hilton when the X_{i} are spheres and extended to the general case by Milnor [2].

We shall sketch the proof of Theorem 1 , when $n-i \geqq 2$. The details will appear in [3].

The inclusion map $j: T_{i}\left(X_{1}, \cdots, X_{n}\right) \rightarrow T_{0}\left(X_{1}, \cdots, X_{n}\right)$ may be replaced by a homotopy equivalent fibre map, $p: E \rightarrow T_{0}$, with fibre F_{i}. It is easily seen that when $n-i \geqq 2$, the short exact sequence

$$
* \rightarrow \Omega F_{i} \rightarrow \Omega E \rightarrow \Omega T_{0} \rightarrow *
$$

splits yielding:

[^0]Lemma 1. $\Omega T_{i}\left(X_{1}, \cdots, X_{n}\right) \sim \Omega X_{1} \times \cdots \times \Omega X_{n} \times \Omega F_{i}$.
Thus an analysis of ΩT_{i} depends upon a study of F_{i}. Standard homotopy methods are applied and it is shown that

Theorem 2. F_{i} is homotopy equivalent to

$$
\underset{s}{\operatorname{V}} \dot{\mathrm{~V}}\left(\Sigma^{n-i} \Lambda \Omega\left(X_{j_{v}}, \cdots, X_{j_{k}}\right)\right)
$$

with $S=\left\{\left(j_{1}, \cdots, j_{k}\right) \mid 1 \leqq j_{1}<\cdots<j_{k} \leqq n\right.$ with $\left.n-i+1 \leqq k \leqq n\right\}$ and r equal to the binomial coefficient

$$
\binom{k-1}{n-i}
$$

where $V_{r} X$ is the one point union of r copies of X.
If we rename the spaces of Theorem 2, we may write $\Omega F_{i} \sim \Omega \bigvee_{j=1}^{N} \Sigma Y_{j}$. This is the case studied by Hilton and Milnor. Their result shows that ΩF_{i} is homotopy equivalent to a weak infinite product, $\prod_{j=1}^{\infty} \Omega \Sigma Y_{j}$, where each $Y_{j}=\Sigma^{r} \Lambda\left(Y_{1}^{\left(i_{1}\right)}, \cdots, Y_{N}^{\left(i_{N}\right)}\right)$ for some ($N+1$)-tuple, $\left(r, i_{1}, \cdots, i_{N}\right)$. Since each $Y_{j}, j \leqq N$, is of the form $\Sigma^{n-i-1} \wedge\left(\left(\Omega X_{1}\right)^{(i 1)}, \cdots,\left(\Omega X_{n}\right)^{\left(i_{n}\right)}\right)$, it follows that each $Y_{j}, j>N$, is of the form $\Sigma^{r} \Lambda\left(\left(\Omega X_{1}\right)^{(j 1)}, \cdots,\left(\Omega X_{n}\right)^{\left(j_{n}\right)}\right)$. We thus have:

Theorem 3. $\Omega T_{i}\left(X_{1}, \cdots, X_{n}\right)$ is homotopy equivalent to a weak infinite product, $\prod_{j=1}^{\infty} \Omega \Sigma X_{j}$, where each $X_{j}, j>n$, equals

$$
\Sigma^{r} \Lambda\left(\left(\Omega X_{1}\right)^{\left(j_{1}\right)}, \cdots,\left(\Omega X_{n}\right)^{\left(j_{n}\right)}\right)
$$

for some $(n+1)$-tuple, $\left(r, j_{1}, \cdots, j_{n}\right)$, depending upon j. In addition there exists an algorithm for computing the set of $(n+1)$-tuples over which the product is taken.

In particular the algorithm is given by combining the HiltonMilnor theorem with Theorem 2. Note that the $X_{i}, i \leqq n$, of Theorem 3 need not be suspensions. However, if each $X_{i}=\Sigma Y_{i}$, for some space Y_{i}, a further decomposition is possible as seen by the following theorem.

Theorem 4. If $r \geqq 1, \Omega \Sigma^{r} \wedge \Omega \Sigma\left(Y_{1}, \cdots, Y_{m}\right)$ is homotopy equivalent to a weak infinite product, $\prod_{i=m+1}^{\infty} \Omega \Sigma Y_{i}$, where each Y_{i}, $i \geqq m+1$, is equal to $\Sigma^{t} \wedge\left(Y_{1}^{\left(i_{1}\right)}, \cdots, Y_{m}^{\left(i_{m}\right)}\right)$ for some $(m+1)$-tuple, (t, i_{1}, \cdots, i_{m}). Moreover, an explicit algorithm can be given for computing the set of $(m+1)$-tuples over which the product is taken.

Theorem 1 follows from Theorems 3 and 4.
The proof of Theorem 4 is modeled after [2]. The set of $Y_{j}, j>m$, of Theorem 4 is called a set of Λ-basic products and is defined inductively as follows. The basic product of weight one are Y_{1}, \cdots, Y_{m}, and $\Sigma^{m-1} \Lambda\left(Y_{1}, \cdots, Y_{m}\right)=Y_{m+1}$. Those of weight two are Y_{m+j+1} $=\Lambda\left(Y_{m+1}, Y_{j}\right), j=1, \cdots, m$. Define e by setting $e(h)=0$ if $1 \leqq h$ $\leqq m+1$ and $e(h)=h-(m+1)$ if $m+1<h \leqq 2 m+1$. Let $n>2$. Assume inductively that the products of weight less than n have been defined and are ordered and that $e(i)$ is defined for all such i. The basic products of weight n are all elements $\Lambda\left(Y_{i}, Y_{j}\right)$ such that weight $Y_{i}+$ weight $Y_{j}=n$ and $e(i) \leqq j<i$. These are ordered arbitrarily among themselves and are greater than all products of lesser weight. Let $e(h)=j$ if $Y_{h}=\Lambda\left(Y_{i}, Y_{j}\right)$. This completes the inductive description of $\left\{Y_{j}\right\}$.

References

1. P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.
2. J. Milnor, The construction FK, Princeton University, 1956, mimeographed.
3. G. J. Porter, The homotopy groups of wedges of suspensions, (to appear).

Massachusetts Institute of Technology

[^0]: ${ }^{1}$ This research was supported in part by National Science Foundation Grant GP-1740.

