A GENERALIZATION OF THE HILTON-MILNOR THEOREM

BY GERALD J. PORTER¹

Communicated by J. Milnor, November 19, 1964

The Hilton-Milnor theorem states that $\Omega \bigvee_{i=1}^{n} \Sigma X_{i}$ is homotopy equivalent to a weak infinite product, $\prod_{i=1}^{\infty} \Omega \Sigma X_{i}$, where each $X_{i}, i > n$, is a smash product of the X_{i} 's, $i \leq n$. In this note we extend this theorem to the 'wedges' lying between $\bigvee_{i=1}^{n} \Sigma X_{i}$ and $\prod_{i=1}^{n} \Sigma X_{i}$.

It will be assumed that all spaces are connected countable CWcomplexes with base points. $T_i(X_1, \dots, X_n)$ is the subset of $X_1 \times \dots \times X_n$ consisting of those points with at least *i* coordinates at base points. T_0 is the cartesian product and T_{n-1} is the space studied by Hilton and Milnor. T_{n-1} will also be denoted by $\bigvee_{j=1}^n X_j$. The smash product $\Lambda(X_1, \dots, X_n)$ is the quotient space $T_0(X_1, \dots, X_n)/T_1(X_1, \dots, X_n)$. Define $X^{(n)}$ inductively by $X^{(0)} = S^0$ and $X^{(n)} = \Lambda(X^{(n-1)}, X)$, for n > 0.

The *n*-fold suspension, $\Sigma^n X$, is defined to be $\Lambda(S^n, X)$. The loop space of X, ΩX , is the set of maps, $f: I \to X$, such that f(0) = f(1) = *. We shall abbreviate $(\Sigma X_1, \dots, \Sigma X_n)$ and $(\Omega X_1, \dots, \Omega X_n)$ by $\Sigma(X_1, \dots, X_n)$ and $\Omega(X_1, \dots, X_n)$, respectively.

THEOREM 1. $\Omega T_i \Sigma(X_1, \dots, X_n)$ is homotopy equivalent to a weak infinite product, $\prod_{j=1}^{\infty} \Omega \Sigma X_j$, where each X_j is equal to $\Sigma^r \Lambda(X_1^{(11)}, \dots, X_n^{(j_n)})$ for some (n+1)-tuple, (r, j_1, \dots, j_n) , depending upon j. Moreover, the set of (n+1)-tuples over which the product is taken is computable.

If i=n-1, Theorem 1 is the Hilton-Milnor theorem. It was proven in [1] by Hilton when the X_i are spheres and extended to the general case by Milnor [2].

We shall sketch the proof of Theorem 1, when $n-i \ge 2$. The details will appear in [3].

The inclusion map $j: T_i(X_1, \dots, X_n) \to T_0(X_1, \dots, X_n)$ may be replaced by a homotopy equivalent fibre map, $p: E \to T_0$, with fibre F_i . It is easily seen that when $n-i \ge 2$, the short exact sequence

$$* \to \Omega F_i \to \Omega E \to \Omega T_0 \to *$$

splits yielding:

¹ This research was supported in part by National Science Foundation Grant GP-1740.

LEMMA 1. $\Omega T_i(X_1, \cdots, X_n) \sim \Omega X_1 \times \cdots \times \Omega X_n \times \Omega F_i$.

Thus an analysis of ΩT_i depends upon a study of F_i . Standard homotopy methods are applied and it is shown that

THEOREM 2. F_i is homotopy equivalent to

$$\bigvee_{s} \bigvee^{r} (\Sigma^{n-i} \wedge \Omega(X_{j_1}, \cdots, X_{j_k}))$$

with $S = \{(j_1, \dots, j_k) \mid 1 \leq j_1 < \dots < j_k \leq n \text{ with } n-i+1 \leq k \leq n\}$ and r equal to the binomial coefficient

$$\binom{k-1}{n-i}$$

where $\bigvee X$ is the one point union of r copies of X.

If we rename the spaces of Theorem 2, we may write $\Omega F_i \sim \Omega \bigvee_{j=1}^N \Sigma Y_j$. This is the case studied by Hilton and Milnor. Their result shows that ΩF_i is homotopy equivalent to a weak infinite product, $\prod_{j=1}^{\infty} \Omega \Sigma Y_j$, where each $Y_j = \Sigma^r \wedge (Y_1^{(i_1)}, \cdots, Y_N^{(i_N)})$ for some (N+1)-tuple, (r, i_1, \cdots, i_N) . Since each $Y_j, j \leq N$, is of the form $\Sigma^{n-i-1} \wedge ((\Omega X_1)^{(i_1)}, \cdots, (\Omega X_n)^{(i_n)})$, it follows that each $Y_j, j > N$, is of the form $\Sigma^r \wedge ((\Omega X_1)^{(i_1)}, \cdots, (\Omega X_n)^{(i_n)})$. We thus have:

THEOREM 3. $\Omega T_i(X_1, \cdots, X_n)$ is homotopy equivalent to a weak infinite product, $\prod_{i=1}^{\infty} \Omega \Sigma X_i$, where each X_i , j > n, equals

$$\Sigma^{r} \wedge ((\Omega X_1)^{(j_1)}, \cdots, (\Omega X_n)^{(j_n)})$$

for some (n+1)-tuple, (r, j_1, \dots, j_n) , depending upon j. In addition there exists an algorithm for computing the set of (n+1)-tuples over which the product is taken.

In particular the algorithm is given by combining the Hilton-Milnor theorem with Theorem 2. Note that the X_i , $i \leq n$, of Theorem 3 need not be suspensions. However, if each $X_i = \sum Y_i$, for some space Y_i , a further decomposition is possible as seen by the following theorem.

THEOREM 4. If $r \ge 1$, $\Omega \Sigma^r \wedge \Omega \Sigma(Y_1, \dots, Y_m)$ is homotopy equivalent to a weak infinite product, $\prod_{i=m+1}^{\infty} \Omega \Sigma Y_i$, where each Y_i , $i \ge m+1$, is equal to $\Sigma^t \wedge (Y_1^{(t_1)}, \dots, Y_m^{(t_m)})$ for some (m+1)-tuple, (t, i_1, \dots, i_m) . Moreover, an explicit algorithm can be given for computing the set of (m+1)-tuples over which the product is taken.

358

1965] A GENERALIZATION OF THE HILTON-MILNOR THEOREM

Theorem 1 follows from Theorems 3 and 4.

The proof of Theorem 4 is modeled after [2]. The set of $Y_{j}, j > m$, of Theorem 4 is called a set of Λ -basic products and is defined inductively as follows. The basic product of weight one are Y_1, \dots, Y_m , and $\Sigma^{m-1}\Lambda(Y_1, \dots, Y_m) = Y_{m+1}$. Those of weight two are $Y_{m+j+1} = \Lambda(Y_{m+1}, Y_j), j=1, \dots, m$. Define e by setting e(h) = 0 if $1 \leq h$ $\leq m+1$ and e(h) = h - (m+1) if $m+1 < h \leq 2m+1$. Let n > 2. Assume inductively that the products of weight less than n have been defined and are ordered and that e(i) is defined for all such i. The basic products of weight n are all elements $\Lambda(Y_i, Y_j)$ such that weight Y_i +weight $Y_j = n$ and $e(i) \leq j < i$. These are ordered arbitrarily among themselves and are greater than all products of lesser weight. Let e(h) = j if $Y_h = \Lambda(Y_i, Y_j)$. This completes the inductive description of $\{Y_j\}$.

References

1. P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.

2. J. Milnor, The construction FK, Princeton University, 1956, mimeographed.

3. G. J. Porter, The homotopy groups of wedges of suspensions, (to appear).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY