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Morse theory relates the topology of a Hilbert manifold [3, §9], M,
to the behavior of a C* function f: M—R having only nondegenerate
critical points. In applying Morse theory to the study of G-mani-
folds, i.e., manifolds with a compact Lie group G acting as a differenti-
able transformation group, one must, of course, use maps in the cate-
gory, i.e., equivariant maps. However, if x is a critical point of an
equivariant function then gx is also a critical point for any g&gG,
hence one must allow critical orbits or, more generally, critical sub-
manifolds.

In §1 we give the necessary definitions and notation. In §2 we ex-
tend the results of R. Palais in [3] to study an invariant C* function
f: M—R on a complete Riemannian G-space M, where in addition to
f satisfying condition (C) [3, §10], we require that the critical locus
of f be a union of nondegenerate critical manifolds in the sense of
Bott [1]. In §3 we show that if M is finite-dimensional then any in-
variant C*® function on M can be C* approximated by a C* invariant
function whose critical orbits are nondegenerate. Together with the
results of §2 this provides an analogue for G-manifolds of the Smale
handlebody decomposition technique. Proofs will be given elsewhere.

1. Notation and definition. G will denote a compact Lie group and
M a C= Hilbert manifold. If ¢: GX M— M is the differentiable action
of G on M, then, for any g&G, g: M— M will denote the map given
by g(m) =y (g, m); ¥(g, m) will also be shortened to gm. If M, N are
G-manifolds, then f: M—N, is equivariant if fo =g o f for all gEG;
f is invariant if f o g=f for all g&G. The tangent bundle T'(M) of a
G-manifold M is a G-manifold with the action gX=dg,(X), for
X&eT (M), If E and B are G-manifolds and 7: E—B is a Hilbert
vector bundle [2], then 7 is said to be a G-vector bundle if, for each
g&G, g: E—E is a bundle map. Note that 7 is then equivariant as
is the zero-section. If, in addition, = has a Riemannian metric, ( , ),
and each g&G acts isometrically, then = will be called a Riemannian
G-vector bundle. M will be called a Riemannian G-space if T(M)—M
is a Riemannian G-vector bundle. Let f: M—R be an invariant C*
function. The gradient vector field, Vf, on M, is defined by (Vf, X)
=df,(X)for X& T(M),and, since f is invariant, gVf,, (X)=(Vfp, g71X)
=dfy(g7'X) =d(f 0 §71)¢p(X) = df 1p(X) = (Vfgp, X} for all XET(M),,
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s0 gVf,=Vfs. Hence, if ¢, is the maximum solution curve of Vf with
initial condition p [3, §6], then go,=ay,.

At a critical point of p, i.e., where Vf,=0, we have a bounded,
self-adjoint operator, the hessian operator, ¢(f),=T(M),—T(M),,
defined by {(¢(f),v, w)=H(f),(v, w), where H(f), is the hessian bi-
linear form [3, §7]. A closed invariant submanifold V of M will be
called a critical manifold of f if V=g, VNOM= and if each
pE Vis a critical point of f. It follows that T(V),Cker ¢(f),, and so
there is an induced bounded self-adjoint operator (f): T(M),/T(V),
—T(M),/T(V), If $(f), is an isomorphism for each p& V, then V
is called a nondegenerate critical manifold of f.

Recall that f is said to satisfy condition (C) if each subset .S of
M on which f is bounded but on which ||Vf|| is not bounded away
from zero has a critical point of f in its closure.

DEerFINITION. The invariant C* function of f: M—R is called a
Morse function for the Riemannian G-manifold M if it satisfies condi-
tion (C) and if the critical locus of f is a union of nondegenerate criti-
cal manifolds without interior.

If E is a Riemannian G-vector bundle or Hilbert space then
lle]| = (e, )2 and E(r) = {e€E|||e]| <7}, E°(r) = {e€E]|||¢|]| <r} and
E(r)={e€E||¢|=r}. If f: M—R, then f** will denote {mEM|a
<f(m) <b} and p=f-=».

Ce(M) will denote the invariant C* functions on the finite-dimen-
sional G-manifold M with the C* topology for some fixed k=2. If
fECe(M), ¢>0 and ¢: R*—M is a coordinate chart for M, then a
neighborhood of f in the C* topology is given by

{h &€ Ce(M)| Ni(fo — ho)(x) < efor|«]| = 1},

where .
N(fo) @)= ZllaGond,
7=0
and || || denotes the usual norm on multilinear transformations.

Ce(M) is a space of the second category.

2. Morse functions. The behavior of a function near a critical
manifold is specified by the

MoRSE LEMMA. Let w: E—B be a Riemannian G-vector bundle and
f & Morse function on E having B (i.e., the zero-section) as a nonde-
generate critical manifold. If B is compact there is an equivariant diffeo-
morphism 0: E(r) — E for some r > 0 such that f(6(e)) =“Pe||’
—|[(1 = P)el|2, where P is an orthogonal bundle projection.
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An important property of Morse functions is given by:

ProrosiTioN. If f is a Morse function the critical locus of f in f*® is

the union of a finite number of disjoint, compact, nondegenerate critical
manifolds of f.

We also have the

DirreoMORPHISM THEOREM. Let f be a Morse funciton on M with no
critical value in the bounded interval [a, b]. If fo—35+8 is complete for
some 8> 0 then f* is equivariantly diffeomorphic to f°.

Atiaching a handle-bundle.

DerINITION. Let V, W be Riemannian G-vector bundles over B.
The bundle V(1) ®@W(1) = {(x, y)EVOW| ||« =1, ||y 1} (not a
manifold) is called a handle-bundle of type (V, W) with index=dimen-
sion of W. Let N, M be manifolds with boundary, NCM and
f: V(1) ®W(1)—>M a homeomorphism onto a closed subset H of M.
We shall write M = N\U;H, and say that M arises from N, by attach-
ing a handle-bundle of type (V, W) if

(i) M=NVUH,

(i) fl V(1)@ W(1) is a diffeomorphism onto HNAN,

(iii) f| V°(1) ® W(1) is a diffeomorphism onto M — N.

ATTACHING LEMMA. Let m: E—B be a Riemannian G-vector bundle
and P an orthogonal bundle projection. Let V=P(E), W=(1—P)(E)
and define f,g: E— R by f(e) = ||P¢|2 — ||(1 — P)é||?, g(e) = fle)
—3¢/2\(|| Pe||2/€) where >0 and \ is the function defined in [3, §11].
Then {xCE(2¢)|g(x) < —e} arises from {xEEQe)|f(x)<—e} by
attaching a handle-bundle of type (V, W).

Note that B is a nondegenerate critical manifold of f. By the Morse
Lemma we can choose coordinates for 7: E—B such that f(e) =|| Pe||?
—||(1 =P)e||? in a neighborhood of B for any function f having B
as a nondegenerate critical manifold. Hence, by abuse of notation, we
shall also refer to the handle-bundle of type (P(E), (1—P)E) as the
handle-bundle (B, f).

MAIN THEOREM. Let f be a Morse funciion on the complete Rie-
mannian G-space M. If f has a single critical value ¢ in the bounded
interval [a, b), then the critical locus of f in [a, b] is the disjoint union
of a finite number of compact submanifolds Ny, - - -, N,. f* is equivari-
antly diffeomorphic to f* with s handle-bundles of type (N, f) disjointly
attached.

An excision and Thom'’s theorem proves the
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CoROLLARY (Borrt [1]). Let Ny, - - -, N be those critical manifolds
with index (N;, f)=k;< . Then

t
Hu(f?, [ Zs) = 3, Huwi(Ns; Z2).
=1

Now let a, b be arbitrary regular values of f, a<b, and again denote the
critical manifolds of finite index k; by {Ni}, i=1, -+ -, t. Let Rn(X)
=dimension of Hn(X; Z2) and x(X) the Euler characteristic of X. Then
we have the Morse inequalities:

() x(F, 1) = gy (—1)kx (),

(i) Rm(f? /%) S 24a1 Rmsi(N),

(iil) 270 (=)™ Ri(f% ) S Dhar 2io (= D)™ R (V).

3. Density lemma. Let M be a finite-dimensional G-manifold. For
any compact subset 4 of M, Me(4, M) CCq(M) will denote those

functions whose critical locus in 4 is the union of nondegenerate
critical orbits. Clearly 9tg(4, M) is open in Ce(M).

LeMMA 1. Let G act orthogonally on the Euclidean space V with fixed
point set W. Then Mg(W (1), V) is open and dense in Ca(V).

The proof follows from an application of Sard’s theorem to f | w
(for any f) and some jiggling of f in the normal direction to W. Baire’s
theorem and a double induction on the dimension and number of com-
ponents of M yields

LEMMA 2. Me(V(1), V) is open and dense in Ca(M).
One further application of Baire’s theorem yields

DEeNsITY LEMMA. For any finite-dimensional G-manifold M,
Me(M, M) is dense in Caq(M).

Carefully approximating an invariant proper function by a func-
tion in Me(M, M) gives

CoRroOLLARY. There exists a Morse function on M.
Combining the corollary with the main theorem yields

COROLLARY. If M is compact then M=(Ny, f)\Ig(Ny f) - - -
Uy (N, ) where the (N, f)'s are handle-bundles over orbits.

Vector bundles over orbits can be described as follows: Let 7: E—Q
be a G-vector bundle over the orbit Q, x©Q and let HCG be the
isotropy group of x. Then Q= G/H and G—G/H is a principal bundle
with structural group H. Since H acts linearly on 7~1(x) = F we have
the associated vector bundle GXgF with fibre F. GXgF—G/H is
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actually a G-vector bundle since the actions of G and H on GX F
commute. The projection GX F—F extends by equivariances to a
bundle equivalence

GXygF—E
) !
G/H ~ Q.

Hence w: E—Q is determined by the action of H on F.
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A symplectic group over a field #F; or Fj, according to a theorem
of Dickson and Dieudonné (see [1]), has no normal subgroups other
than its center { +1 } Attempts at integral analogues of this theorem
have of late been quite successful. First Klingenberg [6] showed that
every normal subgroup of a symplectic group over a local ring is a
congruence group (again with some exceptions). Then Bass, Lazard
and Serre [2] showed that every normal subgroup of finite index in
the symplectic group Spz.(Z) over the rational integers contains a
congruence subgroup if #=2. In [5], Jehne proved local results
similar to Klingenberg’s, and used them to show that any normal
subgroup G of the symplectic group over a suitable Dedekind ring is
a congruence subgroup, if G is closed under the congruence topology.

The above three integral results all assumed that the discriminant
of the alternating form is a unit. The purpose of this note is to drop
this restriction and give a generalization of [6]. In order to obtain
a tractable canonical form, it is necessary to assume that the local

1 Research partially supported by National Science Foundation grant GP-1656.



