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I t has been shown by Hirsch [4, Theorem 4.6] that any nonclosed 
smooth w-manifold can be imbedded in R2n~l ( w ^ l ) . Also, Haefliger 
and Hirsch [2, Theorem 1.1 ] proved that if n>4, a smooth closed 
w-manifold can be imbedded in R*n~l if and only if its normal Stiefel-
Whitney class Wn~l vanishes (and, according to Massey and Peter
son [10, Lemma 9] , Wn~l can only be nonzero if the manifold is 
nonorientable and n a power of 2). As to the cases w ^ 4 , the imbed
ding is clearly impossible for n ^ 1 ; it can be done for n — 2 (here, Wl 

vanishes precisely in the orientable case) classically. In this note, we 
shall also accomplish the proof for n = 3. Only w = 4 remains unde
cided. We note that the only gap in the proof of [2] for n = 4 is the 
appeal to the result of Haefliger; in the piecewise linear case this can 
be filled by using instead a result of Irwin [ó]. (The details of this 
argument will appear in a paper of Hirsch.) For n = 3, every piece-
wise linear manifold can be smoothed, and every paracompact mani
fold triangulated, so all these are included in our result. The pattern 
of the proof resembles that in the orientable case (settled by Hirsch 
in [5]). 

All the imbedding theorems for 3-manifolds depend on the follow
ing principle, first used by Hirsch in [4]. 

Suppose M immersed in RK, and that M has a subcomplex S8 such 
that M can be imbedded in any neighbourhood of S, and / c ^ 2 s + l . Then 
M can be imbedded in RK. 

For since imbeddings are dense in the space of maps Ss—>RK, and 
immersions are open in the space of maps M-*RK, we may suppose 
that the immersion imbeds S. I t then imbeds some neighbourhood 
of S (it is not necessary for this to assume S compact) and the result 
follows. 

We shall call a subcomplex 5 as above a spine of M. Our proposed 
theorem will then follow from: 

Any closed 3-manifold M bounds a 4-manifold W such that (a) W 
immerses in JR5, and (b) W has a 2-dimensional spine. 

The proof of this will be split in three parts : discussion of the tan
gent bundle of M (for completeness), cobordism theory (to obtain W 
satisfying (a)) and surgery (to obtain also (b)). 

A priori, the group of the tangent bundle of M may be taken as 03. 
We note two subgroups each with two elements: 0\ and the centre Z 
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(consisting of ± the identity matrix). Since each contains an orienta
tion-reversing element, each homogeneous space O3/O1, O3/Z is diffeo-
morphic to SOz. Thus for any 3-complex M9 there is only one obstruc
tion 0i (respectively, o2)Ç:IP(M; Z2) to reducing the group of a given 
03-bundle to Oi (respectively, Z). To calculate 01 and o2% we identify 
Box and Bz with real projective space PN(R) ; the corresponding uni
versal bundles are rç + €+e, rj+7]+rj (where rj is the non trivial, e the 
trivial line bundle) and have w2 = 0, w25*0, respectively. Hence o\ = w2, 

Now calculate Stiefel classes of the tangent bundle to M by Wu's 
method. We have ^Wi~ ^Sqf^jOk, where ViXz-i: = Sq{xz-i for all 
Xz-iÇîHz-i(M). So ^,Vk = l+vi, and ^ ^ » = l+^ i+z^ . And W2~VJ[, so 
02 = 0: the group of the tangent bundle reduces to Z. (We have not 
seen this result in print before.) For the normal bundle (whose group 
must also reduce to 08), we deduce ze>2 = 0, so 01 = 0 and the group re
duces to Oi. (This result is, of course, well known.) 

Next, we need the cobordism group for manifolds with Oi as struc
tural group of the stable normal bundle. As Box we can take PN(R). 
The Thorn space of rj is just Pv+i(R). If the normal bundle has di
mension n, the group is [13] wn+z(Sn~lPN+i(R)), where 5 n - 1 denotes 
(w-l)-fold suspension. According to Liulevicius [9], this group is 
cyclic of order 2. Note that in the case of SOi we obtain irn+z(Sn), 
which is cyclic of order 24. The inclusion 5 0 i C 0 i induces inclusions 
S1 = PI(R)CPN+I(R), f:S«CSn~lPN+i(R), and a map /*:7rn+8(S») 
—>Trn+z(Sn"1PN+i(R))» We assert t h a t / i s onto. Indeed, in Liulevicius' 
computation, the element of order 2 arises from a term e0ihi 
GExt1«6(iî*(Piv+i(i^)) ; Z2) in the E2 term of the spectral sequence of 
Adams [ l ] . But since ƒ induces a cohomology monomorphism, e0i is 
the image of the generator e'0l of Ext°»1(i3r*(5i; Z2), Z2), so f*(eoXhi) 
— eoihi. The result follows from naturality of the Adams spectral 
sequence, and the fact that all differentials vanish on e'01hi. 

We next assert that if M3 is orientable (nonorientable) we can 
choose a reduction of the group of the stable normal bundle to 
50i (Oi) so that M bounds an SOi- (Oi-) manifold WK In fact, 
consider a 3-disc in M. The SOi- (or Or) structure can be defined 
over this disc by a framing. We change the framing by aÇiirz(SOn). 
According to Kervaire [7], this changes the framed (i.e., 50i) co
bordism class by Ja in the orientable case; since / : 7rz(SOn)-^7rn+z(Sn) 
is onto, our assertion follows. The same is valid in the nonorientable 
case since the composite ƒ* / is onto. 

Finally, we perform surgery on W. First note (cf. Smale [12]) 
that T^has a presentation formed by attaching i-handles ( 0 g i ^ 4 ) 
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to MXl. According to Smale [ l l ] we may suppose the handles 
attached in order of increasing i\ also [12, §4] that there are no 0-
handles. We will perform surgery to get rid of 1-handles. Now a 1-
handle is attached to M by two discs lying in M. We choose an arc 
a joining the discs, and thicken it; hence the two discs lie in a single 
disc A in M. Attaching the 1-handle is the same as glueing to M along 
A a handlebody£3C(4, 1,1), i.e., a Z)3-bundle over S1. If this is non-
orientable, W, hence also M, is nonorientable ; we repeat the construc
tion with a in the other orientation class (of arcs joining the two given 
discs). If it is orientable, we have DzXSl. 

We will replace this by S2XD2; however, some care is necessary. 
Since DZXSX is orientable, even if W is not, the SOi- or Oi-structure 
can be defined by a framing over it. We now perform framed surgery 
(Kervaire and Milnor [8, Lemma 6.2]); this ensures that the new 
manifold resulting from W still has SOi- or Oi-structure. Also, attach
ing S2 X D2 to M along A can be described by adding a 2-handle. (This 
method of replacing 1-handles by 2-handles is due to Wallace [15, p. 
521 ].) We continue in this way by induction until no 1-handles are left. 

We assert that the resulting manifold W* satisfies conditions (a) 
and (b) required by our plan. Indeed, W4 still has an Oi-structure on 
its stable normal bundle. I t follows from Hirsch [3, Theorem 6.4] 
that W4 immerses in R5, i.e., (a) is satisfied. But consider the handle 
decomposition of W dual to the one above. In this, there are only 
handles of dimensions 0, 1, and 2. Assertion (b), and hence our main 
result, now follows from 

PROPOSITION. Let Wbea manifold with a handle presentation with all 
handles of dimension ^r. Then W has an r-dimensional spine. 

PROOF. We will use induction on the number of handles. An r-
handle is defined by attaching DrXDm~r along Sr~1XDm~r. We call 
DrX0 the core of the handle. Clearly DrXDm~r can be retracted, by 
a deformation which is an imbedding at each stage, towards (S1""""1 

XDm~r)KJ(Dr X0). 
Our induction will produce a spine 5, a map <£: dW—*S, with map

ping cylinder M, and a homeomorphism \[/: W—>M which induces a 
diffeomorphism of W— S on dWX [0, 1). When we attach an r-
handle to W, we add to S its core, and the mapping cylinder of 
<f>\ (5 r _ 1 X0). We need only redefine 4> near Sr'1XDmr^9 and ^ cor
respondingly; this can easily be done in suitable local coordinates, 
using the remarks above. 

I t is, perhaps, also worth commenting that this method gives a 
general imbedding theorem which improves some of those referred to 
at the start of this paper. 
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THEOREM. Suppose Mm has boundary dM, and that the pair (M, dM) 
is reconnected, r^m — 4:. If M immerses in Rs (which happens if set 2m 
— r — 1) and s ̂  2m — 2r — l, then M imbeds in R*. 

PROOF. By methods of Smale and Mazur one can show that M 
has a handle decomposition based on dM, and with no handles of 
dimension ^ r . (See, for example, [14, Theorem 5.5].) Taking the dual 
decomposition, and applying the above proposition, shows that M 
has an (w—r —1) -dimensional spine S. The result now follows from 
our general principle, enunciated at the start of this paper. Immer
sions can be constructed since, as S is a deformation retract of M, any 
bundle (e.g., a normal bundle) over M with fibre dimension ^(m — r) 
has a cross-section. 

Added in proof. Our main result has also been announced by V. A. 
Rohlin, Dokl. Akad. Nauk SSSR 160 (1965), 549-551. 
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