A CON JECTURE OF J. NAGATA ON DIMENSION AND METRIZATION ${ }^{1}$

BY PHILLIP A. OSTRAND
Communicated by R. P. Boas, March 10, 1965
Theorem 1. A metrizable space X is of dimension $\leqq n$ if and only if X admits a metric compatible with the topology which satisfies the condition (n): For any $n+3$ points $x, y_{1}, \cdots, y_{n+2}$ of X there exist distinct indices i, j such that $d\left(y_{i}, y_{j}\right) \leqq d\left(x, y_{j}\right)$.

In this paper we outline briefly a proof of Theorem 1, which was conjectured by J. Nagata [1].

By dimension we shall always mean covering dimension. A family of subsets of X is discrete if each point of X has a neighborhood which meets at most one member of the family. For a subset A of X and a family \mathfrak{C} of subsets of X, let $S(A, \mathfrak{C})$ denote the union of A and all those $C \in \mathbb{C}$ such that $C \cap A \neq \varnothing$. For each integer $n \geqq 0$, let

$$
\begin{aligned}
S^{n}(A, \mathfrak{C}) & = \begin{cases}A & \text { if } n=0 \\
S\left(S^{n-1}(A, \mathfrak{C}), \mathfrak{C}\right) & \text { if } n>0\end{cases} \\
{[\mathbb{C}]^{n} } & =\left\{S^{n}(C, \mathfrak{C}): C \in \mathfrak{C}\right\}
\end{aligned}
$$

Let X be a metrizable space of dimension $\leqq n$. For each positive integer j there exist $n+1$ discrete families of open sets, $\mathfrak{u}_{j}^{1}, \mathfrak{u}_{j}^{2}, \cdots, \mathfrak{u}_{j}^{n+1}$ such that if $\mathcal{u}_{j}=\cup_{i=1}^{n+1} u_{j}^{i}$, then:
(1) each u_{j} covers X;
(2) for each $x \in X,\left\{S\left(x, \mathcal{U}_{j}\right): j=1,2, \cdots\right\}$ is a neighborhood base at x;
(3) $\left[\mathfrak{u}_{j+1}\right]^{31}$ refines \mathfrak{u}_{j} for each j;
(4) if $j<k$ and $1 \leqq i \leqq n+1$, each member of $\left[\mathcal{U}_{k}\right]^{31}$ meets at most one member of \mathfrak{u}_{j}^{i}.

The \mathcal{u}_{j}^{i} are defined inductively on j. Their construction relies on a new characterization of dimension [2].

Theorem 2. A metrizable space X is of dimension $\leqq n$ if and only if for each open cover \mathfrak{C} of X there exist $n+1$ discrete families of open sets, $\mathcal{U}^{1}, \mathfrak{u}^{2}, \cdots, \mathcal{U}^{n+1}$ such that $\bigcup_{i=1}^{n+1} \mathcal{U}^{i}$ is a cover of X which refines \mathbb{C}.

Proof of Theorem 1. Let R^{*} denote the set of dyadic rationals in the open interval $(0,1)$. For each $m \in R^{*}$ there exist $n+1$ discrete

[^0]families of open sets $\delta_{m}^{1}, S_{m}^{2}, \cdots, S_{m}^{n+1}$ such that if $S_{m}=\bigcup_{i=1}^{n+1} S_{m}^{1}$ then:
(1') each δ_{m} covers X;
(2') for each $x \in X,\left\{S\left(x, S_{m}\right): m \in R^{*}\right\}$ is a neighborhood base at x;
(3') if $m<p \in R^{*}$, then \S_{m} refines S_{p};
(4) if $m, p \in R^{*}$, and j is a positive integer such that $2^{-j} \leqq m<p$ $\leqq 2^{-(j-1)}$, then S_{m}^{i} refines S_{p}^{i} for each $1 \leqq i \leqq n+1$;
(5') if $m<p \in R^{*}, 1 \leqq i \leqq n+1$ and $U \in S_{m}^{i}, V \in S_{p}^{i}$, then either $U \subset V$ or $U \cap V=\varnothing$;
(6^{\prime}) if $m, p \in R^{*}, m+p<1$, and if $U \in s_{m}, V \in s_{p}$ are such that $U \cap V \neq \varnothing$, then there exists $W \in \Phi_{m+p}$ such that $U \cup V \subset W$.

The S_{m}^{i} are constructed from the \mathcal{U}_{j}^{i} as follows: Let

$$
* \mathfrak{u}_{j}^{i}=\left\{S^{31}\left(U, \mathfrak{u}_{j+1}\right): U \in \mathfrak{u}_{j}^{i}\right\} ; \quad * \mathfrak{u}_{j}=\bigcup_{i=1}^{n+1} * \mathfrak{u}_{j}^{i}
$$

For $A \subset X, 1 \leqq i \leqq n+1, j \geqq 1$ and $k \geqq 0$, let

$$
\begin{aligned}
T^{k}(A, i, j) & = \begin{cases}S\left(A,{ }^{*} u_{j}^{i}\right) & \text { if } k=0 \\
S\left(T^{k-1}(A, i, j),{ }^{*} \mathfrak{U}_{j+k}^{i}\right) & \text { if } k>0\end{cases} \\
T(A, i, j) & =\bigcup_{k=0}^{\infty} T^{k}(A, i, j)
\end{aligned}
$$

For $m \in R^{*}$ of the form $m=\sum_{k=1}^{t} 2^{-m_{k}}$, where $1 \leqq m_{1}<m_{2}<\cdots<m_{t}$, let $\bar{m}=\sum_{k=1}^{t-1} 2^{-m k}$. Further, for $A \subset X$ and $1 \leqq i \leqq n+1$, let

$$
\begin{aligned}
i_{A} m & = \begin{cases}T\left(A, i, m_{1}+1\right) & \text { if } t=1 \\
T\left(S^{3}\left(i_{A} \bar{m}, * \bigcup_{m_{t}}\right), i, m_{t}\right) & \text { if } t>1\end{cases} \\
s_{m}^{i} & =\left\{i_{U} m: U \in \mathcal{U}_{m_{1}}^{i}\right\}
\end{aligned}
$$

This complicated construction is necessary to achieve condition (5^{\prime}). A simpler construction in which (5^{\prime}) does not hold was used by Nagata [1] to obtain a weaker result.

Define a non-negative real-valued function d on $X \times X$ by

$$
d(x, y)= \begin{cases}1 & \text { if } y \notin S\left(x, S_{m}\right) \text { for any } m \in R^{*} \\ \inf \left\{m \in R^{*}: y \in S\left(x, S_{m}\right)\right\} & \text { if } y \in S\left(x, S_{m}\right) \text { for some } m \in R^{*}\end{cases}
$$

d is clearly symmetric. It follows from (3^{\prime}) that $d(x, y)=0$ only if $x=y$. The triangular inequality follows from (6^{\prime}). Thus d is a metric on X. By (1^{\prime}) and ($\left.2^{\prime}\right) d$ is compatible with the topology of X. If $x, y_{1}, \cdots, y_{n+2}$ are points of X, then by (4^{\prime}) and (5^{\prime}) there exist indices $i, j, i \neq j$, such that $d\left(y_{i}, y_{j}\right) \leqq d\left(x, y_{j}\right)$.

Conversely, suppose that X is a metric space with metric d satisfy-
ing condition (n). Let \mathfrak{C} be an open cover of X. It is easily shown by use of Zorn's Lemma that if $A \subset X$ and $\epsilon>0$, there is a subset B of X which is maximal (under inclusion) with respect to the properties:
(i) $B \cap A=\varnothing$;
(ii) $\left\{S_{\epsilon}(x): x \in B\right\}$ refines $\mathbb{C}_{\text {; }}\left(S_{\epsilon}(x)=\{y \in X: d(x, y)<\epsilon\}\right)$
(iii) if $x \neq y \in B$, then $d(x, y) \geqq \epsilon$.

Hence we may construct subsets A_{i} of X for $i=1,2, \cdots$, inductively on i, which are maximal with respect to the properties:
(1) $A_{i} \cap\left\{y \in X\right.$: for some $1 \leqq j<i$ and $\left.x \in A_{j}, d(x, y)<2^{-j}\right\}=\varnothing$;
(2) $\left\{S_{2-i}(x): x \in A_{i}\right\}$ refines \mathbb{C};
(3) if $x \neq y \in A_{i}$, then $d(x, y) \geqq 2^{-i}$.

Let $\mathcal{U}=\left\{S_{2-i}(x): x \in A_{i} ; i=1,2, \cdots\right\}$. The maximality of the A_{i} insures that \mathcal{U} covers X. Conditions (1) and (3) and the condition on the metric insure that \mathfrak{U} is of order $\leqq n+1$. Thus the proof is complete.

References

1. J. Nagata, General topology and its relation to modern analysis and algebra, Academic Press, New York; pp. 282-285.
2. P. A. Ostrand, Dimension of metric spaces and Hilbert's Problem 13, Bull. Amer. Math. Soc. 71 (1964), 619-622.

Northwestern University

[^0]: ${ }^{1}$ This research was supported in part by a National Science Foundation Fellowship.

