SOME SPACES WHOSE PRODUCT WITH E^1 IS E^4

BY J. J. ANDREWS AND LEONARD RUBIN¹

Communicated by O. G. Harrold, March 22, 1965

1. Introduction. If A is a collection of subsets of E^{a} , then $A^{*}=\bigcup\{a|a\in A\}$. A sequence A_{i} , $i=1, 2, 3, \cdots$, of locally finite disjoint collections of subsets of E^{a} is trivial if $A_{i+1}^{*}\subset \operatorname{Int}(A_{i}^{*})$, each element of A_{i} is a cube with handles semi-linearly imbedded in E^{a} , and the inclusion map $j:a' \rightarrow a$, where $a' \subset a \in A_{i}$ and $a' \in A_{i+1}$, is null homotopic.

If A_i , $i=1, 2, \cdots$, is a trivial sequence let G be the set of points of $E^2 - \bigcap A_i^*$ and components of $\bigcap A_i^*$. Let X be the corresponding decomposition space. The main result, Theorem 2, may now be stated.

THEOREM 2. If each element of A_i , $i = 1, 2, \dots$, is a solid torus, then $X \times E = E^4$.

This theorem is parallel to results in [1], [3], [4] and others. The proof is similar to that given in [4].

2. Some useful maps. Let $D = \{z | z \in E^2 \text{ and } |z| \leq 1\}$, $S = \{z | z \in E^2$ and $|z| = 1\}$, $D_1 = \{z | z \in E^2 \text{ and } |z| \leq 1/2\}$, $T = D \times S$ and $B = D_1 \times S$ $\subset T$. Let $p: D_1 \times E \to B$ be the universal covering of B where p is given by $p(x, t) = (x, e^{it})$ for $x \in D_1$, $t \in E$. Let $h: D_1 \times E \to T \times E$ by $h(x, t) = (x, e^{it}, t)$ and $q: T \times E \to T$ by q(x, s, t) = (x, s) where $x \in D$, $s \in S$ and $t \in E$. Hence qh(x, t) = p(x, t).

Let B' be a finite subcomplex of Int (B) such that the inclusion map $j: B' \rightarrow \text{Int}(B)$ is null homotopic. Using the homotopy lifting theorem, there exists $j^*: B' \rightarrow D_1 \times E$ such that:

$$D_1 \times E \xrightarrow{h} T \times E$$
$$j^* \nearrow \downarrow p \qquad \downarrow q$$
$$B' \xrightarrow{i} B \subset T$$

is commutative and both j^* and h are homeomorphisms.

If $u \in B'$, $hj^*(u) = (u, \psi(u))$ where $\psi: B' \to E$. If $(x, s) \in B'$ where $x \in D_1, s \in S$, then $j^*(x, s) = (x, w(x, s))$ where $w: B' \to E$. By commutativity,

¹ Supported in part by NSF GP 4006.

(*)
$$e^{w(x,s)i} = s$$
 and $\psi(x, s) = w(x, s)$.

Since B' is compact, $\psi(B') \subset [-\alpha, \alpha]$, for some $\alpha \in E$. We extend ψ to a map $\Psi: T \rightarrow [-\alpha, \alpha]$ by:

$$\Psi(u) = \psi(u) \quad \text{for } u \in B',$$

$$\Psi(u) = 0 \quad \text{for } u \in T - B$$

 $\Psi(u)$ is determined by Tietze's extension theorem otherwise.

Define the homeomorphism $\lambda: T \times E \to T \times E$ by $\lambda(u, t) = (u, \Psi(u)+t)$. We call λ the lifting map; it will be used later.

Let $T_{\phi}: T \to T$ be a homeomorphism of T onto T defined for each real number ϕ by the following:

$$T_{\phi}(x, s) = \begin{cases} (x, s) & (x, s) \in Bd(T), \\ (x, se^{i(2\phi|x|-2\phi)}) & (x, s) \in T - (B \cup Bd(T)), \\ (x, se^{-i\phi}) & (x, s) \in B \end{cases}$$

where $x \in D$ and $s \in S$. Let $\tau: T \times E \to T \times E$ by $\tau(u, t) = (T_t(u), t)$. We call τ the twisting map.

Consider $q\tau\lambda: T \times E \to T$. For $x \in D$, $s \in S$ and $t \in E$, $q\tau\lambda(x, s, t) = T_{\Psi(x,s)+t}(x, s)$. If $(x, s) \in B'$ then

$$q\tau\lambda(x, s, t) = (x, se^{-(\Psi(x,s)+t)i}) = (x, e^{-ti})$$

by (*).

LEMMA 1. The homeomorphism $f = \tau \lambda$: $T \times E \rightarrow T \times E$ has the following properties:

(1) f = id. on $Bd(T \times E)$,

(2) diam $(f(B' \times w)) \leq \text{diam}(D_1 \times [-\alpha, \alpha]),$

(3) $f(T \times w) \subset T \times [w - \alpha, w + \alpha]$ and

(4) f is uniformly continuous on $B \times E$.

PROOF. We shall only prove (4), the other three following easily from the construction. Let $\epsilon > 0$. For the uniformly continuous map $\bar{f}=f|B \times [0, 4\pi]$, let $0 < \delta < 2\pi$ be as in the definition of uniform continuity. If $u, v \in B$, $t \leq s \in E$ and $d((u, t), (v, s)) < \delta < 2\pi$, let k be an integer chosen so that $0 \leq t - 2k\pi < 2\pi$ and $0 \leq s - 2k\pi < 4\pi$. By uniform continuity, $d(\bar{f}(u, t-2k\pi), \bar{f}(v, s-2k\pi)) < \epsilon$. But d(f(u, t), f(v, s)) $= d(\bar{f}(u, t-2k\pi), \bar{f}(v, s-2k\pi))$; hence f is uniformly continuous on $B \times E$.

3. Shrinking sets in a solid torus. Assume now that each element of A_i , $i=1, 2, \cdots$, is a solid torus.

LEMMA 2. Let $A \in A_i$, $A_0 = A_{i+1}^* \cap A$ and $\epsilon > 0$. There exists a homeo-

676

morphism H of E^4 onto itself such that:

- (1) H = id. on the complement of $A \times E$,
- (2) diam $(H(A_0 \times w)) < \epsilon$,
- (3) $H(A \times w) \subset A \times [w, w + \epsilon]$ and
- (4) H is uniformly continuous on $A_0 \times E$.

PROOF. Let g' be a homeomorphism of A onto T; we assume that g' is chosen so that $g'(A_0) \subset Int(B)$. Define $g: A \times E \to T \times E$ by g(x, t) = (g'(x), t). For g^{-1} and $\epsilon > 0$ let δ be as in the definition of univorm continuity. Now make the following modifications of the function f of Lemma 1. The disk D_1 could have been chosen to be of arbitrarily small diameter; similarly the function Ψ could have been chosen so that α would be arbitrarily small. Then we may assume that $\dim(D_1 \times [-\alpha, \alpha]) < \delta$, and furthermore that $\alpha < \epsilon/2$. Then define a homeomorphism $f': T \times E \to T \times E$ by $f'(x, t) = (y, s + \epsilon/2)$ where f(x, t) = (y, s). Defining H = id. outside $A \times E$ and $h^{-1}f'h$ elsewhere, then H is as desired.

One now proceeds as in [2] or [4] to derive Theorem 1 and Theorem 2.

THEOREM 1. There exists a uniformly convergent sequence of homeomorphisms of $E^3 \times E$ onto $E^3 \times E$ whose limit f satisfies:

- (1) f is 1-1 outside $\bigcap A_i^* \times E$,
- (2) $f(g \times w)$ is a point for each $g \in G$ and
- (3) If $g \times w \neq g' \times w'$, then $f(g \times w) \neq f(g' \times w')$ for $g \in G$.

THEOREM 2. If each element of A_i , $i = 1, 2, \dots$, is a solid torus, then $X \times E = E^4$.

Theorem 2 of [4] is a corollary of our Theorem 2; the process of lifting and twisting is essentially the method used there. One can see that although Theorem 2 is quite general, it is a special case of the following conjecture.

CONJECTURE. If each element of A_i , $i=1, 2, \cdots$, is a cube with handles, then $X \times E = E^4$.

References

1. J. J. Andrews and M. L. Curtis, *n-space modulo an arc*, Ann. of Math. 75 (1962), 1-7.

2. R. H. Bing, Upper semicontinuous decompositions of E³, Ann. of Math. 65 (1957), 363-374.

3. ——, The cartesian product of a certain nonmanifold and a line is E⁴, Ann. of Math. 70 (1959), 399-412.

4. Leonard Rubin, The product of an unusual decomposition space with a line is E^4 , (to appear).

FLORIDA STATE UNIVERSITY

1965]