SOME SPACES WHOSE PRODUCT WITH E^{1} IS E^{4}

By J. J. ANDREWS AND LEONARD RUBIN ${ }^{1}$

Communicated by O. G. Harrold, March 22, 1965

1. Introduction. If A is a collection of subsets of E^{3}, then $A^{*}=\mathrm{U}\{a \mid a \in A\}$. A sequence $A_{i}, i=1,2,3, \cdots$, of locally finite disjoint collections of subsets of E^{3} is trivial if $A_{i+1}^{*} \subset \operatorname{Int}\left(A_{i}^{*}\right)$, each element of A_{i} is a cube with handles semi-linearly imbedded in E^{8}, and the inclusion map $j: a^{\prime} \rightarrow a$, where $a^{\prime} \subset a \in A_{i}$ and $a^{\prime} \in A_{i+1}$, is null homotopic.

If $A_{i}, i=1,2, \cdots$, is a trivial sequence let G be the set of points of $E^{3}-\cap A_{i}^{*}$ and components of $\cap A_{i}^{*}$. Let X be the corresponding decomposition space. The main result, Theorem 2, may now be stated.

Theorem 2. If each element of $A_{i}, i=1,2, \cdots$, is a solid torus, then $X \times E=E^{4}$.

This theorem is parallel to results in [1], [3], [4] and others. The proof is similar to that given in [4].
2. Some useful maps. Let $D=\left\{z \mid z \in E^{2}\right.$ and $\left.|z| \leqq 1\right\}, S=\left\{z \mid z \in E^{2}\right.$ and $|z|=1\}, D_{1}=\left\{z \mid z \in E^{2}\right.$ and $\left.|z| \leqq 1 / 2\right\}, T=D \times S$ and $B=D_{1} \times S$ $\subset T$. Let $p: D_{1} \times E \rightarrow B$ be the universal covering of B where p is given by $p(x, t)=\left(x, e^{i t}\right)$ for $x \in D_{1}, t \in E$. Let $h: D_{1} \times E \rightarrow T \times E$ by $h(x, t)=\left(x, e^{i t}, t\right)$ and $q: T \times E \rightarrow T$ by $q(x, s, t)=(x, s)$ where $x \in D$, $s \in S$ and $t \in E$. Hence $q h(x, t)=p(x, t)$.

Let B^{\prime} be a finite subcomplex of Int (B) such that the inclusion map $j: B^{\prime} \rightarrow \operatorname{Int}(B)$ is null homotopic. Using the homotopy lifting theorem, there exists $j^{*}: B^{\prime} \rightarrow D_{1} \times E$ such that:

\[

\]

is commutative and both j^{*} and h are homeomorphisms.
If $u \in B^{\prime}, h j^{*}(u)=(u, \psi(u))$ where $\psi: B^{\prime} \rightarrow E$. If $(x, s) \in B^{\prime}$ where $x \in D_{1}, s \in S$, then $j^{*}(x, s)=(x, w(x, s))$ where $w: B^{\prime} \rightarrow E$. By commutativity,

[^0]$$
e^{w(x, s) i}=s \quad \text { and } \quad \psi(x, s)=w(x, s)
$$

Since B^{\prime} is compact, $\psi\left(B^{\prime}\right) \subset[-\alpha, \alpha]$, for some $\alpha \in E$. We extend ψ to a map $\Psi: T \rightarrow[-\alpha, \alpha]$ by:

$$
\begin{array}{ll}
\Psi(u)=\psi(u) & \text { for } u \in B^{\prime} \\
\Psi(u)=0 & \text { for } u \in T-B
\end{array}
$$

$$
\Psi(u) \text { is determined by Tietze's extension theorem otherwise. }
$$

Define the homeomorphism $\lambda: T \times E \rightarrow T \times E$ by $\lambda(u, t)$ $=(u, \Psi(u)+t)$. We call λ the lifting map; it will be used later.

Let $T_{\phi}: T \rightarrow T$ be a homeomorphism of T onto T defined for each real number ϕ by the following:

$$
T_{\phi}(x, s)= \begin{cases}(x, s) & (x, s) \in \operatorname{Bd}(T) \\ \left(x, s e^{i(2 \phi|x|-2 \phi)}\right) & (x, s) \in T-(B \cup \operatorname{Bd}(T)) \\ \left(x, s e^{-i \phi}\right) & (x, s) \in B\end{cases}
$$

where $x \in D$ and $s \in S$. Let $\tau: T \times E \rightarrow T \times E$ by $\tau(u, t)=\left(T_{t}(u), t\right)$. We call τ the twisting map.

Consider $q \tau \lambda: T \times E \rightarrow T$. For $x \in D, s \in S$ and $t \in E, q \tau \lambda(x, s, t)$ $=T_{\Psi(x, s)+t}(x, s)$. If $(x, s) \in B^{\prime}$ then

$$
q \tau \lambda(x, s, t)=\left(x, s e^{-(\Psi(x, s)+t) i}\right)=\left(x, e^{-t i}\right)
$$

by (*).
Lemma 1. The homeomorphism $f=\tau \lambda: T \times E \rightarrow T \times E$ has the following properties:
(1) $f=$ id. on $\operatorname{Bd}(T \times E)$,
(2) $\operatorname{diam}\left(f\left(B^{\prime} \times w\right)\right) \leqq \operatorname{diam}\left(D_{1} \times[-\alpha, \alpha]\right)$,
(3) $f(T \times w) \subset T \times[w-\alpha, w+\alpha]$ and
(4) f is uniformly continuous on $B \times E$.

Proof. We shall only prove (4), the other three following easily from the construction. Let $\epsilon>0$. For the uniformly continuous map $\bar{f}=f \mid B \times[0,4 \pi]$, let $0<\delta<2 \pi$ be as in the definition of uniform continuity. If $u, v \in B, t \leqq s \in E$ and $d((u, t),(v, s))<\delta<2 \pi$, let k be an integer chosen so that $0 \leqq t-2 k \pi<2 \pi$ and $0 \leqq s-2 k \pi<4 \pi$. By uniform continuity, $d(\bar{f}(u, t-2 k \pi), \bar{f}(v, s-2 k \pi))<\epsilon$. But $d(f(u, t), f(v, s))$ $=d(\bar{f}(u, t-2 k \pi), \bar{f}(v, s-2 k \pi))$; hence f is uniformly continuous on $B \times E$.
3. Shrinking sets in a solid torus. Assume now that each element of $A_{i}, i=1,2, \cdots$, is a solid torus.

Lemma 2. Let $A \in A_{i}, A_{0}=A_{i+1}^{*} \cap A$ and $\epsilon>0$. There exists a homeo-
morphism H of E^{4} onto itself such that:
(1) $H=$ id. on the complement of $A \times E$,
(2) $\operatorname{diam}\left(H\left(A_{0} \times w\right)\right)<\epsilon$,
(3) $H(A \times w) \subset A \times[w, w+\epsilon]$ and
(4) H is uniformly continuous on $A_{0} \times E$.

Proof. Let g^{\prime} be a homeomorphism of A onto T; we assume that g^{\prime} is chosen so that $g^{\prime}\left(A_{0}\right) \subset \operatorname{Int}(B)$. Define $g: A \times E \rightarrow T \times E$ by $g(x, t)$ $=\left(g^{\prime}(x), t\right)$. For g^{-1} and $\epsilon>0$ let δ be as in the definition of univorm continuity. Now make the following modifications of the function f of Lemma 1. The disk D_{1} could have been chosen to be of arbitrarily small diameter; similarly the function Ψ could have been chosen so that α would be arbitrarily small. Then we may assume that $\operatorname{diam}\left(D_{1} \times[-\alpha, \alpha]\right)<\delta$, and furthermore that $\alpha<\epsilon / 2$. Then define a homeomorphism $f^{\prime}: T \times E \rightarrow T \times E$ by $f^{\prime}(x, t)=(y, s+\epsilon / 2)$ where $f(x, t)=(y, s)$. Defining $H=$ id. outside $A \times E$ and $h^{-1} f^{\prime} h$ elsewhere, then H is as desired.

One now proceeds as in [2] or [4] to derive Theorem 1 and Theorem 2.

Theorem 1. There exists a uniformly convergent sequence of homeomorphisms of $E^{3} \times E$ onto $E^{3} \times E$ whose limit f satisfies:
(1) f is 1-1 outside $\cap A_{i}^{*} \times E$,
(2) $f(g \times w)$ is a point for each $g \in G$ and
(3) If $g \times w \neq g^{\prime} \times w^{\prime}$, then $f(g \times w) \neq f\left(g^{\prime} \times w^{\prime}\right)$ for $g \in G$.

Theorem 2. If each element of $A_{i}, i=1,2, \cdots$, is a solid torus, then $X \times E=E^{4}$.

Theorem 2 of [4] is a corollary of our Theorem 2; the process of lifting and twisting is essentially the method used there. One can see that although Theorem 2 is quite general, it is a special case of the following conjecture.

Conjecture. If each element of $A_{i}, i=1,2, \cdots$, is a cube with handles, then $X \times E=E^{4}$.

References

1. J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math. 75 (1962), 1-7.
2. R. H. Bing, Upper semicontinuous decompositions of E^{3}, Ann. of Math. 65 (1957), 363-374.
3. -The cartesian product of a certain nonmanifold and a line is E^{4}, Ann. of Math. 70 (1959), 399-412.
4. Leonard Rubin, The product of an unusual decomposition space with a line is E^{4}, (to appear).

Florida State University

[^0]: ${ }^{1}$ Supported in part by NSF GP 4006.

