
SOME ELEMENTARY ASPECTS OF MODULAR 
FUNCTIONS IN SEVERAL VARIABLES 

HARVEY COHN1 

1. Introduction. We shall speak of "elementary" aspects as those 
which are understood by direct analogy with the rational, classical, 
"well-known" one-dimensional modular functions, namely, Eisen-
stein series and theta-functions arising through number-theory. By 
contrast, some "nonelementary" aspects are those arising in the gen
eralization process in the Siegel theory of modular functions. Actu
ally, some of the problems of current interest are more topological 
than analytic or number theoretic and in some special instances, func
tions arising in number theory provide illustrations2 of topological 
results (see §16 below), such as compactification parameters. 

The basic classical theory [16] can be built around the number of 
decompositions of an integer into the sum of /-squares (we take 
/==0 (mod 4)). The number of decomposition depends on functions 
like <r«/2-i(w) the sum of the (J/2 — 1) powers of the divisors of m by 
a set of formulas (in §11 below) which are now "classical." 

A series of papers of Siegel, Götzky [9], Maass [l4],Gundlach [ l l ] , 
etc., has extended this study to the field Q(V5). It turns out, how
ever, that a more direct, almost a "word-for-word" analogy can be 
constructed using Q(V2), Q(V3) as shown in recent papers [l] , [3], 
[5]. This study is overshadowed, however, by impending difficulties. 
The fundamental domain involved in Q(V2) or (?(V3) is actually 
of a more difficult topological nature than that of (?(\/5) as shown 
(see §9 below) by electronic computer results [6], [7]. This difficulty 
must come to the surface eventually. 

At the same time that number theoretic formulas have an incred
ibly easy generalization by quadratic modular functions, we encounter 
the difficulty that such functions are not defined on analytic mani
folds except in a few artificial cases (as noticed by Gundlach [lO]). 
Thus classical arguments have not traditionally been extended from 
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one variable to two variables by the use of algebraic function theory, 
only by a more mechanical "method of descent" (see §14 below). 
We therefore seek to examine an elementary case where such improve
ment might still be possible (in §16 below). 

I. T H E CLASSICAL MODULAR SUBDIVISION 

2. The rational fundamental domain. The classical theory of 
modular functions of one variable seems to be derived from work of 
Gauss [8] in potential theory dating back to 1794 (when Gauss was 
17 years old!). The modular group G consists of the transformations 
on the upper half s-plane U 

(2.1) G: z->g(z) = (az + b)/(cz + d), ad - be = 1 

where a, b, c, d are integers. We seek to define a fundamental domain; 
namely, a subset of the upper half s-plane with representatives of 
each equivalence class of points under G. 

A very obvious subgroup of G is 

(2.2) G„:g(z) = z+b 

consisting of all transformations which leave z= <*> invariant. They 
have as fundamental domain the strip 

(2.3) D„: - ! < R e s g \ ( I m O 0). 

I t can be seen that GM together with g—>— 1/z determines G, or 
that {z-*z-{-l, z-* — l/z} =G using the { • • • } for generators. This 
is a consequence of the euclidean algorithm which can be extended 
directly to other fields; i.e., 

( a b\ / l n\ / a b + na\ 

c d)\Q 1 / \ c d + nc)9 

so that the maximum matrix element can be always reduced in size 
by the use of the generators until a 0 is produced. 

For a fixed s0 of the upper half plane Z7, consider all transforma
tions g(z0) (gÇzG). Then it is easily seen that for some equivalent 
point, (i.e., some choice of g), 

(2.5) Im g(zo) = maximum (over choice of g G G). 

For this optimum g, then z*=g(z0) must satisfy 

(2.6) D0: | cz* + d\ à 1 for all (c, d) « 1 

(and a region D0 is thus defined in U). This must be so, for otherwise 
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Legend 

Do outlined by 
D outlined by -
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FIGURE 1. Fundamental domains D for G and D9 for Gt. 

a special g (3*) = (as*+&)/(G3*+i) can be formed for which 

(2.7) Im g(z*) = Im z*/ \ cz* + d\2 > Im s*. 

I t is evident geometrically [6] that (2.6) is implied by | s*+do| ^ 1 
if do is the closed integer to — d/c (when c?*0). Thus (2.6) follows 
from 

(2.8) | * + <*| ^ 1 for all d; 

and Do consists of the exteriors of unit circles drawn a t the integral 
points of the real axis (intersected with the upper half-plane of 
course). This is a property which does not extend itself to the case 
of several variables (see §9 below). 

The fundamental domain of G (in U) is then 

(2.9) 

or 

(2.10) 

D «= Do H £« 

- I < Re 2 g I, 

1 É | s | , 
0 < Im 0, 

with obvious identifications of boundary points. (See the portion of 
Figure 1 surrounded by a dotted line.) 

3. The modular function. At this point we deal with analytic com-
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pactification properties which will prove difficult to generalize to 
several variables. 

First of all, it is trivial to compactify the fundamental domain D 
(nonanalytically) by adjoining an ideal point z = oo (often written 
«z = i co "), to obtain a region 25. This presupposes an "ordinary" 
topology at other points which in turn make special allowance for 
the matching of boundaries. 

Fortunately there is a simple way of introducing the analytic struc
ture on Z) if we use the modular function J{z) which maps "D onto 
the /-sphere (with J(oo) = oo and other points as shown). Thus 

J(z) « (s — p)8 near z = p(=§[—1 + n/3]), 

(3.1) J(z) — 1 « (z — i)2 near z = i, 

J(z) « exp — 2ir iz near z = oo. 

Actually the number theoretic properties of J(z) are well-known and 
need not be explored here. The important thing to note is that at 
2= oo (or / = oo) the uniformizing parameter of Z5 is 1/J, or better 
still, 

(3.2) f = e(2s) («1 / / ) 

where we introduce the convenient designation 

(3.3) e(z) = expxiz. 

We shall generalize this parameter f with "mixed success" later on 
when we take the case of several variables. For now note that e(n) = 1 
exactly when n is even and e(nz)—>0 exactly when n>0 . 

From the reflection properties J( — l/z)=: J(z+1) =/(2), hence 

(3.4) J«az + b)/(cz + d)) = J{z) 

or, taking "differentials" 

(3.5) J'((az + b)/(cz + d))(cz + d)~* = J'(z). 

4. Use of algebraic manifolds. In accordance with the classic the
ory, a subgroup of finite index j within G has a fundamental domain a 
superdomain consisting of j replicas of D. 

For example, a useful subgroup is Gz (of index 3) 

(4.1) Gz: g(z) s z or - 1 /2 (mod 2). 

(The congruence means merely congruences on a, 6, ct d in (2.1).) It 
can be shown that Gz is generated by {z—>s+2, z—> — i/z}. Its funda
mental domain is Dz shown by the solid lines in Figure 1. Here D is 
split into the shaded part where I m J > 0 and the unshaded part 
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where Im / < 0 for convenience in assembling Dz. Thus, 

f - 1 < Rez£ 1, 

(4.2) D3 1 * l * l > 
0 < Im z, 

with obvious boundary identifications (found by reflections). Then 
D9, the compactified region has z = 00 and z = + 1 added, (z = — 1 is the 
same as 2= + 1 since it arises from z-*z — 2 = 2 (mod 2)). 

By the classical algebraic theory there exists an algebraic function 
yp (of J) which maps 10% onto the ^-sphere, namely 

(4.3) ƒ(*) = (4* - l)«/27* 

(unique by the specifications, ^ = 0 at 2 = 1, ^ = 1 at 2 = i, ^=00 at 
z = 00). Strangely enough, algebraic relations like (4.3) abound when 
we use several variables despite the difficulties in establishing an 
algebraic structure. 

To see the simplest connection with number theory, consider the 
Eisenstein series summed over all integers p, q not both zero 

(4.4) Eh(z) = E (pz + q)~\ h even > 2. 

It is easily seen that 

Eh((az + b)/(cz + d)) = Eh(z)(cz + d)\ 

Therefore, Eh{z)J,{z)hl2 is invariant under G, hence algebraic (and 
indeed rational) in J(z). By constructing such functions, we find for 
instance EA(z) = const. J\z)2/ {J(z) [J(z) - 1 ]} and 

E?4 (2) = E%(z) - constant. 

This is a number-theoretic relation since "divisor functions" are 
involved 

(4.5) EiOfl = 2f(A) + 2- [(2x0*/r(*)l E<rk-i(n)e(2nz) 
1 

where 

(4.6) «TA-IM - E < M . 
«In 

Our typical result leads to the classical identity, 

[1 + 240 E <rz(n)e(2nz)]2 = [l + 480 E <n(n)e(2nx)]. 

The presence of the divisor function is not hard to generalize to 
functions of several variables. For the present we shall list several 
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rational identities which are easily proved by algebraic arguments 
and which have starkly simple generalizations to modular functions 
of two variables. 

II. REPRESENTATION BY SQUARES IN RATIONAL INTEGERS 

5. The theta-series. We wish to count the number of representa
tions Rt(m) of m as the sum of t rational squares. We set 

00 

(5.1) 0(z) = X) <nH) (lm z > 0), 
—oo 

and seek to find the Fourier expansion, 
00 

(5.2) 6'(z) -= 1 + E Rt(m)e(mz). 
i 

The theta-function has the property that it responds to identities 
under elements of G3, namely 

(5.3) 6(z+2) = S(z), 

(5.4) 6(--l/z) = B(z)(z/iyi\ 

In order to accommodate the whole modular group G we must intro
duce 

(5.5) e(c, d;z)= £ e[z(n + c/2)* + nd] 
n<=»—oo 

where c and d are integers. Then 

(5.6) 6(c, d; z + 1) = 0(c, c + d + 1 ; z)e(c2/4:), 

(5.7) 6(c, d; - l / s ) - B(dy c; z)e(-cd/2)(z/i)1^. 

Since 

(5.8) 6(c, d+2;z) = (~yo(c + 2, d; z) « 6(c, d; z) 

it is clear that a t most, four theta functions are involved. Moreover, 

(5.9) * ( l f l ; « ) - 0 

by cancellation of pairs of terms, thus only three are left 

0(0,0;z), ö(0, Ijs), «(1,0;*) 

and we identify 

(5.10) «(0,0; 2) =0(z). 
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We speak of a three valued modular function/(e, d\ z) "transform
ing like 0" if it has the same functional equation. We speak of such a 
f(c, d, z) as "single-valued under G" if its three values are the same 
regardless of c and d (excl. c = 1, d = 1). 

Finally by writing the first few terms, we find, that as z—n 00, 

(5.11) 0(0, d)z)-*\ (d = 0 or 1), 

(5.12) 0(1, 0; *)->(). 

6. The singular series. We henceforth assume that / = 0 (mod 4). 
Since eighth roots of unity enter into (5.6) and (5.7) we have the 
general situation 

(6.1) O'ic, d; z) = e*{c9, d„; g(z))(rz + s)-^xm 

where 

(6.2) g(z) = (pz + q)/{rz + s) (EG) 

and c01 dg are another pair of integers (mod 2) while x = ± 1 depending 
on g(z) and c and d. In particular we can show 

(6.3) 0'(O, 0; z) = 8<(c„ d„; g(z))(rz + s)-^x(i)"* 

where 

(6.4) c0 = 0 precisely when rz + s = 1 or z (mod 2) 

and in that case 

(6.5) x(s) — 1 or —1 according as rz + s ss 1 or z (mod 2). 

Hence if z-^ — s/r, an arbitrary rational fraction, then 

((rz + J ) - " 2 if (r, s) = (0,1) (mod 2), 

(-)"4(rz + *)-"2 if (r, s) s (1,0) (mod 2), 

[0 if (r,*) = (1,1) (mod 2). 

(6.6) 0<(O,O;*) « 

(Here " « 0 " means "small zero" of (rz+s)~~tl2.) Hence a "singular 
series " not unlike the Eisenstein series is suggested 

(6.7) 5,(0, 0; z) = £ (rz + 5)-" 2(-1) '" 4 ( rs even). 

Clearly, ignoring sign, ±St(0, 0, 2) will have three values under G 
(although invariant under G3), 

(6.8) St(0,0; z), St(0, 1; z), 5,(1,0; 2). 

We can evaluate 5,(0, 0; 2) by Fourier series analogously with the 
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Eisenstein series. We obtain 
00 

(6.9) S,(0, 0; z) = 1 + £ St(m)e(mz) 
l 

where St(m) is the "singular approximation" to Rt(m). I t has the 
form 

(6.10) St(m) = Dt[odd quot. <rm-i(m) + ( - ) / / 4 exc. <rt/2-i(tn/2)], 

where 

A - »"V[r(*/2)(l - 2-«/*)r(*/2)] 
( 0 . 1 1 ) 

= 8, 16, 8, • - • , for / = 4, 8, 12, • • • , 

and two divisor functions arise. First the "odd-quotient" type occurs 

(6.12) odd quot. c«/2-i(w) = ^ nt,2~x (over n for which m/n is odd) ; 

and then the "excess-of-even-divisors-over-odd" type occurs 
(6.13) exc. atn-i(m) = J2 nt,2-\-l)w (over n \ m). 

We follow the convention that for a number-theoretic function o-(£) = 0 
if £ fails to be integral, so that (6.10) is a different formula for m even 
than for m odd. 

When J = 0 (mod 8), we can form a complete Eisenstein series 

(6.14) S°t(z) = \ £ (rz + * ) - ' / 2 (over all (r, s) = 1). 

Here, S?(z) has only one value (not three) under G, indeed it differs 
by the constant factor 2f(*/2) from Etft(z) as defined in (4.4). Then; 
we expand and find 

(6. IS) S%) = 1 + YjS\{(tn))e{2mz) 
l 

where 

5 < « w » - i (2») ,7 ,/[r(*/2)f(t/2)]}<rf /M(«) 
( 0 . 1 6 ) 

= 240<r8(w) when / = 8. 

The fact that this construction requires / = 0 (mod 8) is quite signifi
cant in extension to several variables, where the "more restricted" 
condition fs=0 (mod 4) seems as satisfactory (see §11 below). 

7. Validity of singular series. Clearly Rt(l) =2t since 

1 = . . . 0 + . . . + ( ± i ) 2 + . . . o + . . . . 
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Hence the singular approximation is valid only if m = 4 or 8. Indeed, 

(7.1) R4(m) = St(m) or 04(O, 0; z) = S4(0, 0; z), 

(7.2) 2?8(w) = S8(m) or 08(0,0; 0) = S8(0, 0; z). 

Actually a "bonus" occurs when / = 8, because 

(7.3) sl((tn)) = No. of Rep. of 2m = 0o(*i, • • • , *s) 

where 
8 

,„ .v *o(*i> * ' ' , ^s) = 2 X % + 2*B(*I + *2 + #3) + 2s6(#i - 2̂ + #4) 
(7.4) x 

+ 2x7Xz + 2#8(#i — #3 — #4). 

This form is less mysterious if we write it as 
2 2 

2<£o = ?! + • • • + ys, 
(7.5) yi + ys^ y2 + y* = y* + y7 = y* + y* 

= y* + y* + y7 + y* (mod 2). 

It is clear from this that <f>o has determinant 1, just like ]T)f *ƒ > but 
4>Q represents only even numbers. Actually 

SB(Z) = 23 *O*0o(#i, • * • , a*)) (summed over integral 8-tuples) 

= £ e(2mz)sl((m)). 
l 

8. Properties of the cusp form. For / = 12, Ruim) j* 5i2(w), but as 
Glaisher discovered, one can write 

(8.1) 012(z) = Sn(z) + lóA1'2^) 

where 

(8.2) A(«) - e(2») Û (1 ~ e(2jz))« 

the generating function of the Ramanujan tau-series. It can be veri
fied that 

oo 

(8.3) A^Os) = e(z) - 12e(3z) - - • • = £ k(m)e(mz) 
l 

has coefficients which are multiplicative and (trivially) which vanish 
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for m even. Thus, 

(8.4) Ru(m) = 5i2(w) for evenw(>0) . 

The quantity A1/2(s) is called a "cusp-form" since it vanishes a t 
z = rational (the "cusps" of Z>8 a t 3 = 1 and oo in particular). I t must 
vanish there since the singular series removes the "main part" of 

The most important property of A1/2(z) for us is the following: 

(8.5) -WK*)/*11*® = *(*)> 

where yf/(z) is the mapping function alluded to in §4 above. Thus the 
cusp forms are useful for their conformai mapping properties. To ob
tain \[/(z) from 0s(z) would be more difficult: 

(8.6) iK«) = J0(O, 0; *)»/{»(<>, 0; *)• - 0(0, 1; g)» - 6(1, 0; *)8}. 

Thus the cusp forms might be "number-theoretically" unwelcome 
but they are "function-theoretically" very useful. This holds for 
modular functions of several variables just as well. 

I I I . T H E QUADRATIC MODULAR FUNCTIONS 

9. The Hilbert domain. The modular subdivision was extended to 
several variables by Hilbert and Blumenthal around 1900 and suita
ble modular functions were defined by Hecke and Siegel from 1910-
1940 approximately. This process was carried out with very little 
knowledge of the actual shape of the fundamental domain. 

Let us narrow our considerations to a real quadratic field Q(Vk) 
(k square-free >1) with fundamental unit €0(>1) and fundamental 
totally positive unit €+(> l ) . The integers are denoted by D. (An 
integer p of Q(Vk) is called totally positive, and written jtC^O, when 
jit>0 and the conjugate n'>0.) Thus when 

2 
k = 2, €0 = 1 + V 2 , €+ = €o, 

k = 3, € o = 2 + -\/3y €+ = €o. 

We consider U the cartesian product of two independent half-planes 

(9.2) U : l m r > 0 , - I m T ' > 0. 

We define the (complete) Hilbert modular group as the transforma
tions Ô(T) of U 

(9.3) ©*: T - > B M , T ' - + Ô ' ( 0 

where 
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(9.4) , ( r ) . _ * ô V ) = _ ^ L 
yr + 0 yr + 0 

and a, j8, 7, 8 (with the conjugates a', j3', 7', S') are integers of Q(\/k) 
satisfying 

(9.5) ab - j9y = €, </S' - ^ 7 ' = e' 

with e, e' conjugate totally positive units. Clearly, it will suffice to 
write (9.3), (9.4), (9.5) as equations on r alone. 

A more immediately applicable group (for theta-functions) is the 
restricted Hubert group. 

(9.6) © : r -» B(r), 9 to = (<"" + 0)/(TT + *) 

where, this time, 

(9.7) ah - fiy = e2 (e a unit). 

When ife = 2, © = ©*; when Jfe = 3, index [®*/®]=2. We consider, 
however, only the fundamental domain of ©*. The generators of 
@* are T - ^ T + ^ G O ) , T—» — 1/r and r—>e+r (or r—*€QT for ®) anal
ogously with (2.4), if we assume the euclidean algorithm. 

We assume QWk) has class number 1. Then the fundamental do
main can be defined as before by generalizing G^ D*, and Do* Thus 

(9.8) © * : r - > € T + y, € » 0 

and ©Î, a fundamental domain under ®£ is 

( QN crs* K < I m r / - I m / £ e+, (r, r') E U. 
C • ' ^ t (Rer,RcTOGÇ(V*) 

where ^P(V^) is a plane parallelogram (or other fundamental domain) 
for the translation group (Re r, Re T') —>(Re r+v, Re r ' +*>') for integer 
F in Q(\/fe). Likewise, we define the norm symbol formally as 

(9.10) N(yr + Ô) = (yr + 5) (7 V + 6') 

so that the definition can be made as follows: 

(9.11) ©Î: I N(yr + 8) |2 è 1 for all (7, 5) = 1, (r, r' G U). 

The fundamental domain of ©* can be taken as 

(9.12) ©* = £)on£)*. 
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The fact that the class number is 1 is reflected in the fact that the 
boundary of £)J, the "floor," lies above the real hyperplane (lm r 
= — I m / = 0). Indeed, it can be shown [l] , [ô] that 

(9.13) ( ImrX-Imr ' ) > 2/d 

for d (the discriminant) = k if k = 1 and 4fe if k ^ 1 (mod 4). 
According to a computation made by the author [6], the floor 

d$)JnSD* cannot consist of one piece, however the fundamental 
domain may be chosen, except for k = 5 (where Götzky [9] showed 
the floor can be made to consist of the piece | N(T) | 2 i.e., | TT'| 2 = 1). 
When k = 2 or 3 there are at least two pieces, say 

(9.14) | N(T) |2 = 1, | N(V2T + 1) I2 = 1, and, 

(9.15) J N(T) j 2 = 1, | i\T((l + VS)T + 1) j 2 = 1. 

When & = 14 (no euclidean algorithm) there are at least 7 such pieces. 
Thus we must be prepared to expect some fairly complicated topo
logical structures in 4-space. (This is the subject of a computation 
presently under way on the Argonne CDC 3600 computer.) 

As a matter of notation we shall write 3)*(\/&)> ®(V&)> etc., in
stead of 35*, ©, etc., when the context is not clear. 

The problems of compactification (§3) and of algebraic manifolds 
(§4) are now of a higher order of magnitude than the number-
theoretic identities. We therefore defer them. 

10. Representations as sums of squares. We consider the problem 
of representing an integer jti of Q(Vk) as the sum of squares of t 
integers v\, • • • , v% in Q(\/k). Let Rt(\/k, p) be the number of such 
representations. We let £)+ denote the totally positive subset of £). 
Clearly /x££)+ if we are to have a reasonable problem. 

To further specify matters, let us assume 

(10.1) * jà 1, i.e., k s 2 or 3 (mod 4). 

(Here we note that the case k = S leads to 10 theta-functions and 
presents a rather poor analogy to the rational case, although that 
case serves as a model for what we do here.) This condition (10.1) 
leads to the ideal factorization of 2 as a square of a principal factor, 

(10.2) 2 = l\. 

We take co = fc+y/k — 2 so that 

(10.3) o) = y/2 when k = 2; w = 1 + V3 when k = 3. 

Thus (w) = 2i in these cases. 
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Also it is not possible to consider R^y/h, M) unless ix=A+2B^/kt 

i.e., 

(10.4) a e o î 
where O2 is the subset of O where /i = 0 or 1 (mod 2) and Ot is the 
totally positive subset of £)2. (Thus A2-4:B2k = N(ji)>0.) 

We introduce the formal symbol 

(10.5) e(Xr) = exp TT^XT - \'r')/2y/k 

where XGÇ(V'fe) and rGU. Here, if XGO, then 

(10.6) e(X) = 1 exactly when X G O2, 

(10.7) e(Xr)—>0 as r — M » , ( / _> — f 00) exactly when \ G O + . 

These conditions are analogous to those of e(nz), (as in (3.3)). We 
have the additional symmetry property eÇKr) =e(—XV). 

If we define, for some kf 

(10.8) 0(r) = 22 *(i*r) (over y G O), 

then 

(10.9) e(r) = 1 + Z **(V*, u)e(jir) (over M G ©Î). 

When we show Rt(Vk, n)>0 then all "congruentially eligible" inte
gers actually are expressible as the sum of / squares (as we do for 
/ = 4 , k = 2). 

We formulate 

(10.10) 6(c, d; r) = 23 «K* + <*>/2)2 + <M (over v G O) 

so that 0(c, d; • • • ) is determined by c and d (mod 2) and, of course, 

0(O,O;r) = 0(r). 

Then four theta-functions (not three!) are actually involved: 

6(c, d; T + 1) = 6(c, d + c; r)eh 

6(c, d; T + o>) = d(c, d + l;r)e2, (co = * + V * - 2), 
(10.11) 

0fo d; €2r) = 0fo <*; r)*3, 

6(c, d\ - 1 / r ) = *(<*, c; T)N(ryi*eé 

where eu to, to, et are fourth roots of unity rather than eighth roots 
as in the rational case (see [2]). Hence if 
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(10.12) / s 0 (mod 4) 

the signs of 0* present no problem. Also, as r—H"OO (r'—>—ioo), 

6(c, d;r)-+l if c = 0, 
(10.13) K' ' J 

6(c, d;r)-+0 if c = 1, 
by actual examination of leading terms. 

11. The singular series. We now make the further restriction on k 
tha t the euclidean algorithm for Q{s/k) is valid (so that the class 
number is definitely 1). Then the operations in (10.11) are seen to 
generate &(Vk) the restricted Hilbert group (9.7) by analogy with 
(2.4). We also assume 

(11.1) € o ^ 1 (mod 2) 

which is true for & = 2, 3, 7 (but false for any other even k>2 where 
Q(Vh) has class number 1). From the property (11.1) if y is odd 
(N(y) odd) then y or e0y belongs to O2. 

We saw that 0* presents no sign problem. Thus if Q ( T ) £ @ * 

(11.2) ôW = (ar + p)/{yr + Ô) 

then as in (6.3), with t = 0 (mod 4) 

(11.3) 0<(O, 0; r) = 0'fa, d,; ^r))N(yr + b)^\ 

It can be shown that the substitutions g(r) for which c8 = 0 are those f or 
which y and 8GD2. (Recall (7, 5) = 1 so a t least one of these is odd.) 
Thus, we obtain the singular series analogous with (6.7). 

(11.4) St(Vk, r) = 2 N(yr + 5)-"2 , 7 and 5 G D2, (7, 8) - 1. 

At the same time we can formulate, analogously with (6.14) 

(11.5) S?\Vk, r) = £ N(yr + 8)-</>, (7, 8) - 1. 

I t is understood in such summations that we do not repeat associates, 
i.e., if 7i = ey, 8i = e8 where e is a unit then we do not repeat both 
(7, 8) and (71, 81). Clearly $0)(\/&> T) has all four values equal under 
©"(unlike 0<(r) in (10.11)). 

We find, analogously with (6.10) and (6.15) 

(11.6) St(Vk, r) = 1 + £ StWK Ùe^r), M G Ot 

where 

(11.7) StWk,v) = A(V£)[oddquot.<r,/2-iGu) + 2*/2~1 exc. <r*/2-iG*/2j)] 
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and, as before (restricting sums so that each ideal (v) occurs once), 

odd quot. <rt/2-i(ji) = S I Nfy) I"2"1 where fx/v (GO) is odd, 

(11.8a) _ . 
exc. (T*/2-I(M) = Z I N(?) j ^ t - l ) * 0 0 where v/n in £). 

00 
(11.8b) Dt(Vk) = 2T</[(4;kyt-1)/2?(Vk, t/2)(l - 2-'/*)]. 

Of course (11.7) is "two formulas" depending on whether or not 
8\N(JJL), and f(V&, t/2) is the zeta function for the field. We see 
DiWk) = 8 for k = 2 and 4 for jfe = 3. 

Furthermore 

(11.9) ^ ( V * , r ) = l + i :5 ' ((V*,/ i)M2Mr) ( o v e r M e O + ) 

where 

(11.10) S!((V*, /0) = Z>î(V*)<r*/M0i), 

and 

(11.11) i?î(V*) = 2(2x)V[(4*)<l_1)/V(V*, */2)] 

so tha t 

# 4 (V£) = 48 for k = 2 and 24 for £ = 3. 

The situation is the following for / = 4: For k = 2, 

(11.12) 6\r) = S4(r) and tf4(V2, /») = S4(V2, /*). 

Thus it is easily seen tha t i?4( \ /2, JU) > 0 if juED^ $0 #&a£ eflery integer 
A+2B\/2, with A> \2B^2\, is the sum of f our squares in £)(v /2). 
For k = 3t then a cusp form A(r) exists for which 

(11.13) 04(r) = 54(r) + 4A(r) 

and an error-function L(JLI) exists (JAÇZO}) 

(11.14) # 4 (V3 , /») = 54(V3, /*) + 4I(W, 

(11. IS) A(r) = ^ £</*)«</") (over /z £ ©Î). 

This is not surprising since for dt = St we should need Dt{^/k)—2t. 
This is seen to be impossible unless k = 2, t = 4 because the f-function 
is close to 1 anyway and Dt(Vk) is noticeably less than 2£ otherwise. 

The singular series Sl(\/k, T) corresponds to the following even 
forms of determinant 1 (see [IS]) 
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/« « « ̂  k = 2 > *>(&» ' * * ' W = 2^ + *X*2 + *» + *» + *'** + ^ 
(11.16) 

+ 2V2«if4 + && + £2*3), 

or 200=^+^2+^3+^4 where 
171 = rçs + V2i74, 172 = 173V2 + 974 (mod 2) ; 

* = 3, *ofti, • • • , W = 2*1 + 2 ^ , V 3 + 2& + 2t\ 
(11.17) , 2 

+ 2* 3£4\/3 + 2£4 

or 2<Eo=^+*?2+*?3+*?4 where 
171 s *?2\/3, 173 = ï?4\/3 (mod 2). 

In each case 52((V^» AO) is the number of representations of 

(11.18) 0o = 2/x, 

and 

(11.19) sl(Vk, r) = 1 + Z sl((Vk, n))e(2ixr) (over/* G 0+). 

The modular function (11.19), like its singular series (11.5), keeps 
transforming into itself under ® (all four values coincide). It will be 
needed later on (§16) in an analytic context. 

12. The cusp form for 04 over (?(V3). We now consider the cusp 
form 

(12.1) A(r) = ££G0«G*r). 

The coefficients are multiplicative, somewhat like the Ramanujan 
and Glaisher functions. Indeed [3], analogously with (8.4) 

(12.2) LQi) = 0, i.e., ^ ( A A M) = ^ ( V 3 , M) (M G tóf) 

whenever 

(12.3) 281 NQi), 3°dd\\NQi), r°dd|| #0*) (prime r s - l m o d 12). 

(Here the symbol "p^a" means apl\at pt+1\a.n) We can see (12.2) 
and (8.4) as analogous in that a "bad" prime divisor makes the 
"exact" formula valid! 

The presence of the cusp form A(r) can be explained by the fact 
that three forms of determinant 1 share the genus of 

*i(Ö = £Î + è + Ù + à 
They are, according to M. Kneser (private communication) 
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and 

02(Ö = é + Û + 2& + 2V3É3É4 + 2*! 

UO = 3(€i + £2 + £3 + ÉÎ) + 2(1 + V 3 ) ( « . - &&) 

Actually 

where 

and 

where each 

+ 2 ( 1 - V3)ftiÉ4 + « i ) . 

2 2 2 2 

2^2 = 171 + 172 + 173 + 174 

171 — 172, 173 = V3i74 (mod 2), 

2 2 2 2 

203 = 171 + 172 + 173 + 174 

17/(1 + V 3 ) =171 + 172 + 173 + 174 (mod 2). 

It also turns out that 

(12.4) 54(V3, M) = No. of Rep. of {<£2(£) = M } , 

(12.5) 54(\/3, fi) - 4Z(M) = No. of Rep. of {<£3(Ö = /*}. 

Hence we have a total of three theta functions satisfying the system 
satisfied by ^(c, d; r) together with 5$(V3, T) (which has all four 
conjugates equal). Of course if M C G ^ ) satisfies (12.3) then 0i, 02, 0s 
each represent \i (an equal number) S4(\/3, M) times. 

We can also define A(c, d\ r) by the functional equations for 
04fo d\ r) by starting with A(0, 0; r) =A(r). We then find 

(12.6) A(c, d; e+r) = A(c + 1, d + 1; r) 

so that even under the complete Hilbert group ®*, À(r) is four-
valued. Furthermore, 

(12.7) 54°(V3, r) = 54°(V3, T€+) ; 

thus the four quantities 
0 

A(c, d\ T)/SA(V3, r)y c, d (mod 2) 

are permuted by operations of ©*. 
Now, reminiscent of the manner in which the resolvent cubic is 

derived, we set [3] 
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A(0,0; r) + A(l, 1 ; r) - A(l, 0; r) - A(0,1 ; r) = P(r) , 

A(0, 0; r) - A(l, 1 ; r) + A(l, 0; r) - A(0,1 ; r) = M (r), 
(12.0) 

A(0, 0; r) - A(l, 1 ; r) - A(l, 0; r) + A(0, 1 ; r) = K(T), 

while A(0,0;r) + A(1, l ; r ) + A(l ,0 ; r ) + A(0, l ; r ) = 0. 

Thus if we set 

4A(c, d; r) = ±^P2{r) ± y/M2{r) ± VK2(r) 

(with four choices of sign having positive product), we find P2(T), 
M2{T)J K2(T) satisfy the "resolvent cubic" of the biquadratic whose 
four roots are A(c, d\ r ) . These three quantities have 3 ! permutations. 

It can be shown that P2(T), M2(T), K2(T) are each kept invariant 
under a subgroup ©*( V3) of ®*(\/3) defined by 

(12.9) ©*(V3): ö(r) s r mod (1 + V3) (ô(r) G @*(V3)). 

The proof is straightforward. I t consists of noticing that the gener
ators of ©*, (r—»r+D, T—* — \/T% T—^e+r), are congruent to rational 
transformations (r—»r+l or —l/r ) mod (1 + V3) and therefore it 
suffices to check (12.9) for each of the (six) rational transformations 
(mod 2) (we discover of course that only the identity T—>T fails to 
permute P 2 , M2, K2). 

IV. PROOFS AND DESCENT PROCESS 

13. Proofs in the rational case by algebraic functions. To appreci
ate the "luxury" provided by an algebraic manifold, consider the 
mode of proof of the rational identities. 

For example, take (7.2) 

(13.1) 08(O,O;s) = S 8 ( 0 , 0 ; z ) . 

To prove this statement, we write 

[«•(0,0; 2) - Ss(0, 0; z)] [0'(0,1 ; z) - S*(0,1 ; z)] 

•[6*(l,0;z)-S6(l,0;z)] 
(13.2) F(z) = 

[/'(*)]• 
By applying the generating substitutions, (z-+z+l, z—> — l/z), we 
can verify that F(z) is rational on Z> (the compactified fundamental 
domain); and therefore F(z) is rational in J(z). (We should like to 
show F(z) = 0 of course.) 

First, note that F(z) might acquire some finite singularities a t z = i 
and z=p via the [ / ' (s)]6 factor. By (3.1), however, we see 
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(13.3) Fo(z) = / ( s ) V ( s ) - i m * ) 

has no finite singularities on the s-plane, only possibly z = i <» ( / = 00 ). 
We now verify, from (3.1) again, that 

J\J - l ) 3 / / ' 6 « J = 0(e(-2z)) , 

^ ( l , 0 ; 2 ) - 5 8 ( l , 0 ; 2 ) = O ( ^ ) ) , 

since both vanish a t z = i 00, and 

^ ( 0 , l ; s ) - S 8 ( 0 , l ; 2 ) = O(l) 

since both are finite. Now, by actually comparing the first few terms 
of 08(O, 0; z) and 58(0, 0; z) we can check agreement 

08(O, 0; 2) - S8(0, 0; s) = 0-1 + ()•«[*] + 0-«[2s] + (?) + • • • . 

Hence F0(z)—»0 as 2—H 00 or Fo(z) has no singularities on the compact 
manifold D. Clearly F0(z), hence F(z)t vanishes identically. 

The generalization of this technique to two complex variables is 
not successful, since the "bicomplex space" is not treated as a mani
fold. 

14. Proofs in the quadratic cases by descent. To prove the quad
ratic number-theoretic identities (of §11, etc.) is a more challenging 
problem. The general genus theory of Siegel [17] provides a uniform 
method of approach embracing both rational and algebraic fields, but 
it is not elementary, generally, although work of Pall [4] has shown 
how to do this when t = 4, by a reduction to the rational case. 

What we do is first establish that the 0(c, d\ r) functions have as 
"simple zeros" the manifolds [ l ] , on which (just) 0(1, 1; r) vanishes: 

(14.1) / = - r for k odd and €0 ^ 1 (mod 2), 

(14.2) €0r = eo'r' for k = 2 (e0 = 1 + V2). 

Thus it can be shown by a generalization of the Siegel-Götzky method 
[9], tha t it suffices to prove an identity by showing it holds on the 
zero manifolds (14.1) up to a finite number of derivatives with re
spect to the distance from the zero manifold. The details are quite 
laborious, bu t the following "zeroth approximation" will suffice to 
demonstrate the formalism : 

Let \l/(c, d\T) be a quadruple satisfying the same functional equa
tions as 0(c, d\Ty (like (10.11)) for fe = 2 or 3. Write 

(14.3) * ( 1 , 1 ; U,-U) = \KV3; U) for k = 3, 

(14.4) $(1,1; e0U,e{U) = *(V2;U) for k = 2. 
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Then the functional equations lead to 

iKV3;17 + V 3 ) = * ( V 3 ; £ 0 , 

* ( V 3 ; - l / £ 0 = KV3;U)U<; 

4,(V2;U+1)=+(V2;U), 

irW2i-l/U)=+(V2;U)U*. 

T h u s ^ ( \ / 3 ; U) a n d ^ ( V 2 ; U) belong to the Hecke or Klein modular 
group and are now subject to a well-known theory in one variable 
(see [1], [3]). 

Here it is interesting to note that the coefficients of ^ ( 1 , 1 ; Z7, — U) 
necessarily become sums of coefficients of ^ ( 1 , 1; r , r ' ) . Hence they 
are readily reducible to rational terms. A typical result [S] of the 
descent process is obtained if ^ ( 1 , 1; r) is taken as 5 j ( \ / 3 , T) in §11. 
Then we find, for example, the number of representations R(a) of 

2 2 2 2 2 2 2 
a = %1 + #1*2 + #2 + %Z + #3*4 + #4 + #5 + #5#6 + #6 + #7 

(14.7) , 
"T #7*8 "T #8 

is the coefficient in ^ ( 1 , 1; U, — £/) of exp 2wia/<>/3 or 

(14.8) jR(a) = 24[<73(Ü0 + 9o-8(a/3)]. 

What we are observing in effect is tha t problems in four squares in 
a quadratic field project into problems in eight squares in the rational 
field. Hence it is not surprising that the functional equations (10.11) 
have only fourth roots of unity in the quadratic case (as compared 
with eighth roots of unity in the rational case). 

By this same token, the sum of two squares might even display remark
able simplification in the case of biquadratic modular forms but no re
sults exist which would substantiate this idea» 

V. REMARKS ON COMPACTIFICATION 

IS. Point at infinity and fixed points. The point at oo(r—H'OO, 
T'—»—too) can be compactified trivially as an ideal point but it 
would not obviously acquire an analytic structure. 

We should not take for granted that there is a valid analogue of the 
rational case, because in the quadratic case, the neighborhood of in
side 35* (see (9.9)) is a "wedge" which might be only a portion on an 
analytic (bicomplex) neighborhood. Indeed this is so (and the purpose 
of general procedures or compactification of Baily, Satake, etc., is to 
generalize to more complicated modular groups than those present 
here). 

(14.5) 

(14.6) 
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Let us first anticipate that if the neighborhood of 00 in 3)t is not 
a "full neighborhood,n conceivably a function G of r and r ' defined 
in 35* might have an isolated singularity in S)t a t r = i o o , r ' = — i«>. 
Actually this will not happen. Let G(T, T') be expanded into a con
vergent power series, 

(15.1) G(r, r') = Z ^ fy)efyr) ( * £ © ) . 

Then only p £ D + can occur. To see this, note that (by the group 
properties under ©*) A(v) =A(ve+)= • • • . Thus if (say) v>0 and 
p ' < 0 , then */'€+—» — » and lim e(ve+mT) = 00 (as m—• <»), so that the 
series (15.1) would never converge for any r a t all. Now once we know 
j>££)+ (only) then the series (15.1) will converge "all the way to 00" 
from any value. 

I t can be further shown (see Gundlach [l0]) that exactly when a 
group © has a finite fixed-point then the corresponding domain D 
does not have an analytic structure a t finite points. Actually the case 
is unlike the rational case where J113 or (7—1)1/2 serves as a uni-
formizing parameter. I t is more like the impossibility of parametriz
ing w = \Z(ziz2). Actually Gundlach shows that for k = 3, ®* (as 
defined in (12.9)) has no fixed point. Its fundamental domain in U, 
S)*(V3), is six replicas of 35*(-\/3). We shall compactify just this bi-
complex manifold. 

16. Introduction of parameters. From §12, the following two func
tions are invariants under ©J, 

<16-1) 7 l ( T - ) - K(V3,* ' / , ( " T ) _ W A * • 
If we expand them, we find the leading terms [3], 

(16.2) / i f r . O - - « . + * . + • • • . 
Mr, T0 = 4f, + 8f, + • • • 

where (recalling «+ = 2 + V 3 = (3 + V 3 ) / ( 3 - V 3 ) ) , 

fi = «[2r] + e[2e+r) + e[2^\] + ••• 

-£«[2Cr], 
(16.3) " . 

ft - «[(3 + V3)r] + «[(3 - V3)r] + • • • 

- Ê « [ ( 3 + V3)^T]. 
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In order to use the u • • • " in (16.2) we must establish orders of 
magnitude. Actually the orders of magnitude are established by the 
shape of the wedge in 3)£. For example, from €+x < Im r/ — lm r' é *+ 
(see (9.9) above), it follows that 

(16.4) l / | e ( r ) | è |*(V3r) | è | e(r) | 

or l A [ ( | i l | + | - B | ) r ] è « [ ( i l + 5 V 3 ) r ] ^ c [ ( | i l | + | J B | ) r ] . It is clear 
that ft and ft are unchanged by r—»T+(1 + \/3)J> (the generating 
translations of ®*). Furthermore, ©J has only two replicas at T « « 
(just as P 3 has two in Figure 1) and we can easily verify the following: 

Every (r, r') in 2)* determines a unique pair (ft, ft) for lm r and 
— Im r' terg6 enough. Conversely, however, not every (ft, ft) is deter
mined by a (r, T') in 5D* (far instance | ft| ^ | ft|2 6y (16.3), (16.4)). 
Nevertheless, for every ft, ft èotó small enough, exactly two pairs 

(r, r') a»J (—r', — T) 

are determined in !£)£. 
This result should be outlined at least well enough to reveal its 

elementary character: First of all, by (16.4) it clearly follows that 

(Ö(T), e(-r\/3)) determines (r, r') (mod 2), 

± (e(r)} e(r\/3)) determines (r, r') (mod 1 + V3), 

± (e(r)y e(re+)) determines (r, T') (mod 1 + V3), 

±(e(r), e(r€+) + e(re+ )) determines (r, r') and (—r', —r) 

(mod 1 + A / 3 ) . 

We now introduce new symbols 

(16.7) E2(Xr) = £ e(Xr4n), 
—oo 

so that 

(16.8) £ 2 ( \ T € + ) = E2(\T). 

Thus we rewrite (16.6) as 

± (E2(r), E2(re+)) determines 

(e+r, €+ T') and (—€+r', — e+ r) (mod 1 + \ / 3 ) . 

±(JB2(r),-E2(r€+)) and ± (E2(re+), E2(r)) determines 

(e+r, e+ T') and (—e+r', — e+ r) (mod 1 + V3). 

(16.5) 

(16.6) 
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Now we note that the pair (A2+B2, AB) determines four pairs 
±(A, B) and ± (B% A). On the other hand, 

f 1 = E\(T) + E\(T€+) + • • • , 
(16.11) 

fi = E2(r)E2(re+) + . . . . 

Therefore, finally we have what we want: 

(f 1, fa) determines the aggregate 

(16.12) (£r + „(1 + V3), € ; V + / ( l - V3)), 

( - c V + Kl + V3), -Cr + / ( l - V3)) 

where P £ D . This aggregate is the set of r which project into a given 
r "modulo (§*>" i.e., the set of transformations congruent mod (1 + V3) 
to T—>r or r—>—T'. 

We therefore artificially extend the group ®* to ©J with the 
adjunction of the symmetry operation 

(16.13) T-+-T', T'-*-T. 

We call the completion $)* the neighborhood of (fi, f2) = (0, 0) or 
equivalently (Ji, /2) = (0, 0). 

Thus the only functions definable on the manifold 3)* are then 
symmetric G(r, r,)=sG:(—T;, —T). This is clearly the case when the 
Fourier coefficients A(v)=A(v') for conjugates, but for some forms, 
the symmetry can conceivably fail (although no cases are available). 

Obviously this is as unsatisfactory as compactifying the Riemann 
sphere and discovering only functions which map reals into reals are 
definable. 

A reasonable subject of curiosity would be the question of whether 
or not the functions Ji, J2 provide a (symmetric) mapping of the 
"completed" (r, r') domain 35* onto the bicomplex Ji, J2 planes, 
with a two fold covering. (The property is valid at 00 as we have seen.) 

The study of nonsymmetric parameters has not yet been occasioned 
by a number theoretic property. Nevertheless the point can now be 
made that number theory is a tool of bicomplex analysis. 
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