SOLVABILITY OF THE FIRST COUSIN PROBLEM AND VANISHING OF HIGHER COHOMOLOGY GROUPS FOR DOMAINS WHICH ARE NOT DOMAINS OF HOLOMORPHY¹

BY AVNER FRIEDMAN

Communicated by F. Browder, June 7, 1965

This work is a sequel to [1]: In [1] we considered the vanishing of the first cohomology groups with coefficients in 0, 0^* for sets $X \setminus A$ whereas in the present work we consider the same question for higher cohomology; at the same time we obtain some additional results for the first Cousin problem. As in [1] we take $n \ge 3$.

Scheja [3] proved that if X is an open set in \mathbb{C}^n and A is an analytic closed subset of X of dimension $\leq n-q-2$, then the natural homomorphism

(1)
$$H^q(X, \mathfrak{O}) \to H^q(X \setminus A, \mathfrak{O})$$

is bijective. We shall prove:

THEOREM 1. Let A be a closed bounded generalized polydisc in an open set X of C^n . Then the natural homomorphism (1) is bijective for any $1 \le q \le n-2$.

PROOF. Set $A = L_1 \times \cdots \times L_n$ and let $K = K_1 \times \cdots \times K_n$ be an open generalized polydisc with $A \subset K \subset \overline{K} \subset X$. Set $L' = L_2 \times \cdots \times L_n$, $K' = K_2 \times \cdots \times K_n$, $G_0 = (K_1 \setminus L_1) \times K'$, $G_1 = K_1 \times (K' \setminus L')$, $G = G_0 \cup G_1$. By a straightforward generalization of [3, Hilfsatz] one gets $H^q(G, 0) = 0$. We now introduce a covering $U = \{U_i\}$ of $X \setminus A$ where all the U_i are domains with $H^q(U_i, 0) = 0$ and precisely q+1of them, say U_{i_0}, \cdots, U_{i_q} , coincide with G. By Leray's theorem [2], the canonical homomorphism

(2)
$$H^q(N(U), \mathfrak{O}) \to H^q(X \setminus A, \mathfrak{O})$$

(where N(U) is the nerve of U) is bijective.

We next introduce a covering $U' = \{U'_i\}$ of X where $U'_{i_0} = \cdots = U'_{i_q} = K_1 \times K'$ and $U'_i = U_i$ for all other indices *i*. Again, the canonical map

(3)
$$H^q(N(U'), \mathfrak{O}) \to H^q(X, \mathfrak{O})$$

¹ This work was partially supported by the Alfred P. Sloan Foundation and by the NASA Grant NGR 14-007-021.

is bijective. We shall now construct a map

(4)
$$H^q(N(U), \mathfrak{O}) \to H^q(N(U'), \mathfrak{O}).$$

Let $f \in H^q(N(U), \mathfrak{O})$. We may view it as a *q*-cocycle. Let $f_{i_0\cdots i_q}$ be the section of f on $U_{i_0} \cap \cdots \cap U_{i_q} = G$. The proof of Lemma 3 in [1] can be extended to show that $f_{i_0\cdots i_q}$ can be continued analytically to $K_1 \times K'$. The continued function $f'_{i_0\cdots i_q}$ thus obtained is defined on $U'_{i_0} \cap \cdots \cap U'_{i_q}$. We now define $f'_{j_0\cdots j_q}$ for any set of distinct indices $\{j_0, \cdots, j_q\}$ which does not coincide with the set $\{i_0, \cdots, i_q\}$. Since among the j_k 's there is at least one index, say i, with $i \neq i_k$ for all $0 \leq k \leq q$, and, consequently, $U'_i = U_i \subset X \setminus A$, we have $U'_i \cap (K_1 \times K') = U'_i \cap G$. Hence $U'_{j_0} \cap \cdots \cap U'_{j_q} = U_{j_0} \cap \cdots \cap U_{j_q}$ and we can take $f'_{j_0\cdots j_q}$.

We have thus defined a q-cochain f' on N(U'). f' is cocycle. Indeed, observing that $U'_{j_0} \cap \cdots \cap U'_{j_{q+1}}$ coincides with $U_{j_0} \cap \cdots \cap U_{j_{q+1}}$ if all the j_k are distinct from each other, and that the analytic function $f'_{j_0} \dots j_{q_{r+1}}$ restricted to either of these sets coincides with $f_{j_0} \dots j_{q_{r+1}}$, the equation $\delta f = 0$ implies $\delta f' = 0$.

We next show that if $f = \delta g$ then there is a (q-1)-chain g' with $\delta g' = f'$. If (a) $\{j_0, \dots, j_{q-1}\} \subset \{i_0, \dots, i_q\}$ then we take $g'_{j_0 \dots j_{q-1}}$ to be the analytic continuation of $g_{j_0 \dots j_{q-1}}$ to $U'_{j_0} \cap \dots \cap U'_{j_{q-1}}$, whereas if (a) does not hold then $U'_{j_0} \cap \dots \cap U'_{j_{q-1}}$, whereas if (a) does not hold then $U'_{j_0} \cap \dots \cap U'_{j_{q-1}}$, whereas if (a) does not hold then $U'_{j_0} \cap \dots \cap U'_{j_{q-1}}$, whereas if (a) does not hold then $U'_{j_0} \cap \dots \cap U'_{j_{q-1}}$. With g' thus constructed, the relation $\delta g' = f'$ over $U'_{j_0} \cap \dots \cap U'_{j_q}$ in case (b) $\{j_0, \dots, j_q\} = \{i_0, \dots, i_q\}$ follows from the relation $\delta g = f$ over $U_{j_0} \cap \dots \cap U_{j_q}$ by analytic continuation, whereas in case (b) does not hold it coincides with the relation $\delta g = f$ over $U_{j_0} \cap \dots \cap U_{j_q}$.

We have thus shown that the map $f \rightarrow f'$ defines a homomorphism (4). This map is surjective since, given f', its restriction f to N(U) is mapped into f' by the above map. It is also injective since if $f' = \delta g'$ for some (q-1)-cochain g' over N(U'), then the restriction g of g' to N(U) clearly satisfies $f = \delta g$. Noting finally that the map $f \rightarrow f'$ is the inverse of the restriction map, and combining (2)-(4), (1) follows.

COROLLARY. If $H^{q}(X, 0) = 0$ then $H^{q}(X \setminus A, 0) = 0$. In particular, if X is Cousin I then $X \setminus A$ is Cousin I.

THEOREM 2. Let A, B be two closed bounded subsets of an open set $X \subset \mathbb{C}^n$ and let P be a closed generalized polydisc with $A \subset \operatorname{int} P \subset P$ $\subset \operatorname{int} B$. If, for some $1 \leq q \leq n-2$, the natural homomorphism

(5)
$$H^q(X \setminus A, \mathfrak{O}) \to H^q(X \setminus B, \mathfrak{O})$$

is injection, then there exists a homomorphism $\lambda: H^q(X \setminus A, \mathfrak{O}) \rightarrow H^q(X, \mathfrak{O})$

such that $\pi\lambda$ = identity, where π is the map (1) (and, consequently, π is surjective); in particular, if $H^{q}(X, 0) = 0$ then $H^{q}(X \setminus A, 0) = 0$.

PROOF. Take coverings U^1 , U^2 , U^3 , U^4 of X, $X \setminus A$, $X \setminus P$, $X \setminus B$ respectively whose open sets are domains of holomorphy and such that the sets of U^i (i=2, 3, 4) are among the sets of U^{i-1} . Given $f_2 \in H^q(N(U^2), 0)$ there corresponds to it (by restriction) a unique element f_4 in $H^q(N(U^4), 0)$ and a unique element f_3 in $H^q(N(U^3), 0)$; f_4 is the restriction of f_3 . By Theorem 1 there exists an $f_1 \in H^q(N(U^1), 0)$ whose restriction to $N(U^3)$ is f_3 . Hence the restriction of f_1 to $N(U_4)$ is f_4 . Since f_1 and f_2 have the same restriction on $N(U^4)$, the injectivity of (5) implies that the restriction of f_1 to $N(U^2)$ is f_2 . Thus the map $f_2 \rightarrow f_1$ is an inverse of the restriction map $H^q(N(U^1), 0) \rightarrow H^q(N(U^2), 0)$. The assertion of the theorem now follows with λ being the image of the homomorphism $f_2 \rightarrow f_1$ under the canonical map corresponding to $H^q(N(U^2), 0) \rightarrow H^q(X \setminus A, 0), H^q(N(U^1), 0) \rightarrow H^q(X, 0)$.

GENERALIZATIONS. By successive applications of Theorem 1 we get: (1) If A_1, \dots, A_m are closed bounded generalized polydiscs such that $A_j \cap A_k = \emptyset$ if $j \neq k$, then the natural map

$$H^{q}(X, 0) \to H^{q}\left(X \setminus \left(\bigcup_{i=1}^{m} A_{i}\right), 0\right)$$

is bijective.

(2) Theorem 1 extends to the case where X is an open set on a complex manifold provided A is contained in one coordinate patch and its image in C^n is a generalized polydisc. Theorem 2 and (1) have similar extensions.

By slightly modifying the proof of Theorem 1 we obtain:

(3) If $X = X_1 \times K_{p+1} \times \cdots \times K_n$, $A = A_1 \times K_{p+1} \times \cdots \times K_n$ where X_1 is any open set of C^p and K_j is an open set in the z_j -plane, then the homomorphism (1) is bijective if $1 \le q \le p-2$.

(4) If A in Theorem 1 is convex, then (see [1]) $H^{q}(G, 0^{*}) = 0$. By modifying the proof of Theorem 1 we find that the natural homomorphism

$$H^q(X, \mathbb{O}^*) \to H^q(X \setminus A, \mathbb{O}^*)$$

is bijective. The analogs of Theorem 2 and (1)-(3) are also valid.

We shall now give a different approach to proving results similar to Theorem 1. Since this approach does not yield a result as general as Theorem 1, we shall only sketch it. Let $X = K_1 \times \cdots \times K_n$, $A = L_1 \times \cdots \times L_n$ be generalized polydiscs. We say that the condition (A_m) holds if for each $j = 1, \dots, m$ either (a) K_1 is the whole plane **C** and then L_j is an arbitrary closed bounded subset of K_j , or (b) $K_j = C$ and then L_j consists of a finite number of points. The L_j for $j = m+1, \dots, n$ are arbitrary closed subsets of K_j .

THEOREM 3. If (A_m) holds for some $2 \le m \le n$ then $H^q(X \setminus A, 0) = 0$ for $1 \le q \le \min(m - 1, n - 2)$. The relations $H^{n-1}(X \setminus A, 0) \ne 0$, $H^q(X \setminus A, 0) = 0$ for $q \ge n$ are valid under the assumption (A_0) .

PROOF. Setting $\Delta_j = K_1 \times \cdots \times K_{j-1} \times (K_j \setminus L_j) \times K_{j+1} \times \cdots \times K_n$ and noting that $H^q(\Delta_j, 0) = 0$ for $q \ge 1$, it suffices to consider $H^q((U), 0)$, where $U = \{\Delta_1, \cdots, \Delta_n\}$. We consider only the case $1 \le q \le n-2$. Denote by $I_{j_1 \cdots j_k}(h)$ the Cauchy integral of h with the *i*th contour being ∂K_i if $i \ne j_p$ for all p, and ∂L_i if $i = j_p$ for some p. (Actually one should replace ∂K_m , ∂L_m by smooth $\partial K_{m,e}$, $\partial L_{m,e}$ which approximate ∂K_m , ∂L_m .) Then we can represent each component $f_{i_0 \cdots i_q}$ of a qcochain f by

(6)
$$f_{i_0\cdots i_q} = \sum_{k=0}^{q+1} \sum_{0; j_1 < \cdots < j_k}^q I_{i_j_1\cdots i_j_k}(f_{i_0\cdots i_q}).$$

LEMMA 1. Consider a domain $D = K \setminus L$ in the complex plane, where K is the whole plane and L is any closed bounded set with C^1 boundary ∂L . Let $\phi(z)$ be any analytic function in D and let $\psi(z)$ be any continuous function on ∂L such that

$$\int_{|\zeta|=R} \frac{\phi(\zeta)}{\zeta-z} d\zeta + \int_{\partial L} \frac{\psi(\zeta)}{\zeta-z} d\zeta = 0 \text{ in } D \cap \{z; |z| < R\}$$

for all R sufficiently large. Then, for all R sufficiently large,

$$\int_{|\zeta|=R} \frac{\phi(\zeta)}{\zeta-z} d\zeta = \int_{\partial L} \frac{\psi(\zeta)}{\psi-z} d\zeta = 0 \text{ in } D \cap \{z; |z| < R\}.$$

A similar result holds in case K is a bounded set with C^1 boundary and L consists of a finite number of points. Using these results, the condition $\delta f = 0$ implies the following system of equations:

If $i_0 < \cdots < i_h \leq m < i_{h+1} < \cdots < i_{q+1}$ for some $0 \leq h \leq q+1$, and if $i_{j_1} < \cdots < i_{j_k} \leq m$ for some $0 \leq k \leq h$, then

(7)
$$\sum_{p=0}^{q-h+1} \sum_{k+1;\lambda_1 < \cdots < \lambda_p}^{q+1} I_{ij_1 \cdots i_{|j|_k} i\lambda_1 \cdots i\lambda_p} \left(\sum_{r=0}^{q+1} (-1)^r f_{i_0 \cdots i_r \cdots i_q} \right) = 0,$$

where in the third summation $\nu \neq j_1, \cdots, \nu \neq j_k$ and $\nu \neq \lambda_1, \cdots, \nu \neq \lambda_p$.

To find g satisfying $\delta g = f$, we try to represent $g_{i_0 \dots i_{g-1}}$ analogously to (6), and then the relation $\delta g = f$ is a consequence of the following system of equations:

1965]

A. FRIEDMAN

If $i_0 < \cdots < i_{h-1} \le m < i_h < \cdots < i_q$ for some $0 \le h-1 \le q$, and if $i_{j_1} < \cdots < i_{j_k} \le m$ for some $0 \le k \le h-1$, then

(8)
$$\sum_{p=0}^{q-h+1} \sum_{h;\lambda_1 < \cdots < \lambda_p}^{q} I_{ij_1 \cdots ij_k i\lambda_1 \cdots i\lambda_p} \left(\sum_{\nu=0}^{q} (-1)^{\nu} g_{i_0} \cdots \widehat{i_{\nu}} \cdots i_q \right) - \sum_{p=0}^{q-h+1} \sum_{h;\lambda_1 < \cdots < \lambda_p}^{q} I_{ij_1 \cdots ij_k i\lambda_1 \cdots i\lambda_p} (f_{i_0} \cdots i_q) = 0,$$

where in the third summation of the first term $\nu \neq j_1, \dots, \nu \neq j_k$ and $\nu \neq \lambda_1, \dots, \nu = \lambda_p$.

Using (7) we can solve (8) as follows: If $i_0 > 1$, or if $i_0 = 1$, $i_{j_1} > 1$ then $g_{i_0 \cdots i_{q-1}} = f_{1i_0 \cdots i_{q-1}}$. If $i_0 = i_{j_1} = 1$ and if $i_1 > 2$ or $i_1 = 2$, $i_{j_2} > 2$ then $g_{i_0 \cdots i_{q-1}} = f_{2i_0 \cdots i_{q-1}}$. We proceed in this manner and finally define, in case $i_0 = i_{j_1} = 1$, \cdots , $i_{k-1} = i_{j_k} = k$, $g_{i_0 \cdots i_{q-1}} = f_{k+1,i_0 \cdots i_{q-1}}$.

This method extends also to the situations described in (1), (3) above.

Added in proof. The relation $H^{p-2}(X \setminus A, 0) \neq 0$ holds if in (3) X_1 and A_1 are both generalized polydiscs. Taking $\Omega_m = X_m \setminus A_m$ where X_m, A_m are generalized polydiscs with $X_m \searrow \overline{X}, A_m \nearrow A$ one derives, for fixed $1 \leq q \leq n-2$, examples of domains Ω_m with $\Omega_{m-1} \supset \overline{\Omega}_m$, such that $H^r(\Omega_m, 0) = 0$ for $1 \leq r \leq n-2$ but $H^q(\Omega, 0) \neq 0$ where $\Omega = \operatorname{int}(\lim \Omega_m)$.

By Dolbeault's theorem, $H^q(\Omega, \mathfrak{O}) = 0$ if and only if for any $C^{\infty}(\Omega)$ form f of bidegree (0, q) with $\overline{\partial}f = 0$ there is a $C^{\infty}(\Omega)$ form u with $\overline{\partial}u = f$. By modifying the proof in [2, p. 29] we find: If for some q > 1, $\overline{\Omega}_m \subset \Omega_{m+1}$, $\Omega = \lim \Omega_m$, $H^r(\Omega_m, \mathfrak{O}) = 0$ for r = q - 1, q, then $H^q(\Omega, \mathfrak{O}) = 0$. Also if $H^1(\Omega_m, \mathfrak{O}) = 0$ and if for any u holomorphic in Ω_m and $\epsilon > 0$ there is a v holomorphic in Ω_{m+1} with $|u-v| < \epsilon$ in Ω_{m-1} , then $H^1(\Omega, \mathfrak{O}) = 0$; this can be applied to $\Omega_m = X_m \setminus A_m$ as in [1, Theorem 3].

References

1. A. Friedman, On the Cousin problems, Bull. Amer. Math. Soc. 71 (1965), 737-741.

2. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, 1965.

3. G. Scheja, Riemannsche Helbarkeitssätze für Cohomologieklassen, Math. Ann. 144 (1961), 345-360.

Northwestern University

746