NONLINEAR MONOTONE OPERATORS AND CONVEX SETS IN BANACH SPACES

BY FELIX E. BROWDER¹

Communicated May 10, 1965

Introduction. Let X be a real Banach space, X^* its conjugate space, (w, u) the pairing between w in X^* and u in X. If C is a closed convex subset of X, a mapping T of C into X^* is said to be monotone if

(1)
$$(Tu - Tv, u - v) \geq 0$$

for all u and v in C.

It is the object of the present note to prove the following theorem:

THEOREM 1. Let C be a closed convex subset of the reflexive Banach space X with $0 \in C$, T a monotone mapping of C into X*. Suppose that T is continuous from line segments in C to the weak topology of X* while $(Tu, u)/||u|| \rightarrow +\infty$ as $||u|| \rightarrow +\infty$.

Then for each given element w_0 of X^* , there exists u_0 in C such that

(2)
$$(Tu_0 - w_0, u_0 - v) \leq 0$$

for all v in C.

If C=X, Theorem 1 asserts that $Tu_0 = w_0$ and reduces to a theorem on monotone operators proved independently by the writer [1] and G. J. Minty [9] and applied to nonlinear elliptic boundary value problems by the writer in [2], [3], and [6]. (See also Leray and Lions [7].) If C=V, a closed subspace of X, the conclusion of Theorem 1 is that $Tu_0 - w_0 \in V^{\perp}$, which yields a variant of the generalized form of the Beurling-Livingston theorem proved by the writer in [4] and [5]. The conclusion of Theorem 1 for C=X was extended by the writer to classes of densely defined operators (see [6] for references) and in [5] to multivalued mappings.

It is easily shown that Theorem 1 generalizes and includes as a special case the following linear theorem of Stampacchia, which has been applied by the latter to the proof of the existence of capacitary potentials with respect to second-order linear elliptic equations with discontinuous coefficients:²

THEOREM 2. Let H be a real Hilbert space, C a closed convex subset of H, a(u, v) a bilinear form on H which is separately continuous in u

¹ The preparation of this paper was partially supported by NSF Grant GP 3552. ² C. R. Acad. Sci. Paris 258 (1964), 4413-4416.

Added in proof. A result similar to Theorem 1 has recently been obtained jointly by Hartman and Stampacchia (in an as yet unpublished paper) who also give a very interesting application to existence theorems for second order nonlinear elliptic equations.

and v. Suppose that there exists a constant c > 0 such that $a(u, u) \ge c ||u||^2$ for all u in H.

Then for each w_0 in H, there exists u_0 in C such that

(3)
$$a(u_0, u_0 - v) \leq (w_0, u - v)$$

for all v in C.

1. We denote weak convergence by \rightarrow , strong convergence by \rightarrow .

LEMMA 1. If $u_0 \in C$, u_0 is a solution of the inequality (2) if and only if

$$(4) (Tv - w_0, v - u_0) \ge 0$$

for all v in C.

PROOF OF LEMMA 1. If for a given u_0 in C and all v in C, we have $(Tu_0 - w_0, u_0 - v) \leq 0$, then since

$$(Tu_0 - Tv, u_0 - v) \geq 0$$

by monotonicity, it follows that

$$(Tv, u_0 - v) \leq (Tu_0, u_0 - v) \leq (w_0, u_0 - v),$$

i.e.,

$$(Tv - w_0, v - u_0) \leq 0.$$

Conversely, suppose the inequality (4) holds for all v in C. Suppose $v_0 \in C$, and for $0 < t \le 1$, set

 $v_t = (1 - t)u_0 + tv_0.$

Then $v_t \in C$, $v_t - u_0 = t(v_0 - u_0)$, and we have

$$0 \leq (Tv_t - w_0, t(v_0 - u_0)) = t(Tv_t - w_0, v_0 - u_0).$$

Since t > 0 may be canceled, we have

$$(Tv_t - w_0, v_0 - u_0) \geq 0.$$

If we let $t \rightarrow 0$ and use the weak continuity of T on segments in C, we have $Tv_t \rightarrow Tu_0$, and hence

$$(Tu_0 - w_0, u_0 - v_0) \leq 0.$$
 q.e.d.

DEFINITION. Let $c(r) = \inf_{||u||=r} \{ (Tu, u) / ||u|| \}$. By the hypothesis of Theorem 1, $c(r) \to +\infty$ as $r \to +\infty$. We have

$$(Tu, u) \geq c(||u||)||u||, \quad u \in C.$$

LEMMA 2. There exists a constant M which depends only upon the

function $c(\mathbf{r})$ and on $||w_0||$ such that if u_0 is a solution of the inequality (2), then $||u_0|| \leq M$.

PROOF OF LEMMA 2. If

$$(Tu_0-w_0, u_0-v) \leq 0, \quad v \in C,$$

we have since $0 \in C$,

 $c(||u_0||)||u_0|| \leq (Tu_0, u_0) \leq (Tu_0 - w_0, u_0) + (w_0, u_0) \leq ||w_0|| \cdot ||u_0||.$ Hence

$$c(\|u_0\|) \leq \|w_0\|$$

and

$$||u_0|| \leq M(||w_0||, c(r)).$$
 q.e.d.

DEFINITION. If $G \subset X \times X^*$, G is said to be a monotone set if [u, w], $[u_1, w_1] \in G$ implies that $(w - w_1, u - u_1) \ge 0$.

G is said to be maximal monotone if it is monotone and maximal in the monotone sets ordered by inclusion.

LEMMA 3. Under the hypotheses of Theorem 1, suppose that C has 0 as an interior point and let $G \subset X \times X^*$ be given by

 $G = \{ [u, w] \mid u \in C, w = Tu + z, where (z, u - v) \ge 0 \text{ for all } v \text{ in } C \}.$

Then G is a maximal monotone set in $X \times X^*$.

PROOF OF LEMMA 3. G is a monotone set since if [u, w] and $[u_1, w_1] \in G$, with w = Tu + z, $w_1 = Tu_1 + z_1$, then

$$(w - w_1, u - u_1)$$

= $(Tu - Tu_1, u - u_1) + (z, u - u_1) + (z_1, u_1 - u) \ge 0.$

Suppose on the other hand that $[u_0, w_0] \in X \times X^*$ with

$$(w_0-w, u_0-u) \geq 0$$

for all [u, w] in G. We assert first that $u_0 \in C$. Otherwise, $u_0 = sv_0$ for some v_0 on the boundary of C with s > 1. Let $z_0 = 0$ be an element of X* such that $(z_0, v_0 - v) \ge 0$ for all v in C. Since 0 is an interior point of C, $(z_0, v_0) > 0$. For each $\lambda > 0$, $[v_0, Tv_0 + \lambda z_0]$ lies in G. Hence

$$0 \leq (w_0 - Tv_0 - \lambda z_0, u_0 - v_0) = (s - 1)(w_0 - Tv_0 - \lambda z_0, v_0).$$

Cancelling (s-1) > 0, we have

$$\lambda(z_0, v_0) \leq (w_0, v_0) - (Tv_0, v_0),$$

782

which is a contradiction since $(z_0, v_0) > 0$ and λ is arbitrary. Hence $u_0 \in C$.

In addition, for each u in C, [u, Tu] lies in G. Hence

$$(T\boldsymbol{u}-\boldsymbol{w}_0,\boldsymbol{u}-\boldsymbol{u}_0)\geq 0.$$

Applying Lemma 1, we have

$$(Tu_0-w_0, u_0-v) \leq 0, \quad v \in C.$$

Hence $Tu_0 - w_0 = -z$, where $(z, u_0 - v) \ge 0$ for all v in C. Hence $w_0 = Tu_0 + z$, and $[u_0, w_0] \in G$. q.e.d.

LEMMA 4. Theorem 1 holds if X is a finite dimensional Banach space F.

PROOF OF LEMMA 4. We may suppose without loss of generality that $w_0 = 0$, that F is a finite dimensional Hilbert space with $F^* = F$, and that C spans F and hence has an interior point v_0 in F. Replacing C by $C_0 = v_0 - C$ and defining a new mapping T' on C_0 by $T'u = -T(v_0 - u)$, it is easy to verify that we may assume that 0 is an interior point of C and the condition on (Tu, u) is replaced by

$$(Tu, u - v_0) \ge c(||u||)||u||$$

for a given v_0 in C, with $c(r) \rightarrow +\infty$ as $r \rightarrow +\infty$.

Let G be the maximal monotone set in $F \times F^*$ constructed in Lemma 3. Then nG is maximal monotone for each positive integer n. By a theorem of Minty [8], for each n > 0, there exists $[u_n, w_n] \in G$ such that

$$u_n + nw_n = 0$$

Since $w_n = Tu_n + z_n$, where $(z_n, u_n - v) \ge 0$ for all v in C, we have

$$-\left(\frac{1}{n}u_n, u_n - v_0\right) = (w_n, u_n - v_0)$$

= $(Tu_n, u_n - v_0) + (z_n, u_n - v_0) \ge c(||u_n||)||u_n||_2$

while

$$-\left(\frac{1}{n}u_n,u_n-v_0\right)\leq \frac{1}{n}\left\|u_n\right\|\cdot\left\|v_0\right\|.$$

Thus $c(||u_n||) \leq n^{-1}||v_0||$, and $||u_n|| \leq M$, independent of n.

We may extract a subsequence which we again denote by u_n such that $u_n \rightarrow u_0$ in F. Then $w_n \rightarrow 0$. For each u in C

$$(Tu - w_n, u = u_n) \geq 0.$$

1965]

F. E. BROWDER

Taking the limit as $n \rightarrow \infty$, we have

$$(Tu, u - u_0) \geq 0, \qquad u \in C.$$

By Lemma 1,

$$(Tu_0, u_0 - v) \leq 0$$

for all v in C. q.e.d.

PROOF OF THEOREM 1. It suffices to take $w_0 = 0$. For each finite dimensional subspace F of X, let $C_F = C \cap F$, j_F be the injection map of F into X, j_F^* the dual projection map of X* onto F*. We set

$$T_F = j_F^*(T \mid C_F) \colon C_F \to F^*.$$

Then T_F satisfies the hypotheses of Lemma 4, and there exists u_F in C_F such that

$$(T_F u_F, u_F - v) = (T u_F, u_F - v) \leq 0, \quad v \in C_F.$$

By Lemma 2, since for u in C_F ,

$$(T_F u, u) = (T u, u) \ge c(||u||)||u||,$$

there exists a constant M independent of F such that $||u_F|| \leq M$. Since X is reflexive and C is weakly closed, there exists u_0 in C such that for every finite dimensional F, u_0 lies in the weak closure of the set $V_F = \bigcup_{F \in F_1} \{u_{F_1}\}$.

Let v be an arbitrary element of C, F a finite dimensional subspace of X which contains v. For u_{F_1} in V_F , by Lemma 1,

$$(Tv, v - u_{F_1}) \geq 0.$$

Since $(Tv, v-v_1)$ is weakly continuous in v_1 , we have

$$(Tv, v - u_0) \leq 0, \quad v \in C.$$

By Lemma 1, $(Tu_0, u_0 - v) \ge 0$ for v in C. q.e.d.

Bibliography

1. F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862-874.

2. ——, Nonlinear elliptic problems. II, Bull. Amer. Math. Soc. 70 (1964), 299-301.

3. ——, Nonlinear elliptic boundary value problems. II, Trans. Amer. Math. Soc. 117 (1965), 530-550.

4. ——, On a theorem of Beurling and Livingston, Canad. J. Math. 17 (1965), 367-372.

5. ——, Multivalued monotone nonlinear mappings and duality mappings in Banach spaces, Trans. Amer. Math. Soc. 118 (1965) 338-351.

[September

784

6. ——, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., Vol. 17, Amer. Math. Soc., Providence, R. I., 1965; pp. 24–29.

7. J. Leray and J. L. Lions, Quelques résultats de Visik sur les problèmes elliptiques quasi-linéaires par le méthode de Minty-Browder, Séminaire de Collège de France, 1964.

8. G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.

9. ——, On a "monotonicity" method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038–1041.

UNIVERSITY OF CHICAGO