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Operators T with real spectrum in finite dimensional complex 
Euclidian space may be characterized by the property 

(1) \eitT\ = 0 ( | / | * ) , /real. 

Our result is a Jordan decomposition theorem for operators T in 
reflexive Banach space which satisfy (1) and whose spectrum (which 
is real because of (1)) has linear Lebesgue measure zero. 

1. The Jordan manifold. Let X be a complex Banach space; denote 
by B(X) the Banach algebra of all bounded linear operators acting on 
X. For m = 0, 1, 2, • • • , Cm is the topological algebra of all complex 
valued functions on the real line R with continuous derivatives up 
to the order w, with pointwise operations and with the topology of 
uniform convergence on every compact set of all such derivatives. Fix 
T<ELB{X). Following [3], we say that T is of class Cm if there exists a 
O-operational calculus for T, i.e., a continuous representation 
f-*T(J) of O into B{X) such that T(l) =7 , T(f) = T if ƒ(*) = / , and 
T( •) has compact support. The latter is then equal to the spectrum of 
T, <r(T). It is known that if T satisfies (1), then it is of class Cm for 
m*zk+2 and has real spectrum (cf. Lemma 2.11 in [3]). 

From now on, let TÇîB(X) satisfy (1), and let T(-) be the (unique) 
O-operational calculus for T% for m fixed^k+2. We write: 

1. | / U . r « E i » m a x . ( n \f(i)\/JU feCm; 
2. U U , r = s u p { l r ( / ) x | ; / e C - , \f\m.r£l},xeX; 
3. Dm={xÇ:X; \x\mtT<(X> }ï 
4. D = \Jm*k+2Dm. 
We call D the Jordan manifold for T. It is an invariant linear mani­

fold for any VÇzB(X) which commutes with T. If a(T) is a finite 
union of points and closed intervals, then there exists an m^k+2 
such that D = Dm = X. This is true for m = k + 2 if cr(T) is a finite 
point set. It follows in particular that Dk+2 contains every finite di­
mensional invariant subspace for T, hence all the eigenvectors of T. 
It is also true that D contains all the root vectors for T, and is there­
fore dense in X if the root vectors are fundamental in X. 

THEOREM 1. Suppose that all nonzero points of <r(T) are isolated. 
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Then the closure of Dk+2 contains the closed range of Tk+1. For k = 0 and 
X reflexive, D2 is dense in X. 

2. The Jordan decomposition. If W is a linear manifold in X, we 
denote by T(W) the algebra of all linear transformations of X with 
domain W and range contained in W. 

Let B denote the Borel field of R. 
A generalized spectral measure on W is a. map £(•) of B into T(W) 

such that 
(i) E(R)x = x for all xEW, and 
(ii) E(-)x is a bounded regular strongly countably additive vector 

measure on B, for each xÇzW. 
We can state now our generalization of the classical Jordan decom­

position theorem for complex matrices with real spectrum to infinite 
dimensional Banach spaces. 

THEOREM 2. Let X be a reflexive Banach space. Let TÇzB(X) satisfy 
(1). Suppose a(T) (which lies on R because of (1)) has linear Lebesgue 
measure zero. Let D be the Jordan manifold for T. Then there exist S 
and N in T(D) such that 

(a) T/D = S+N; 
(b) SN = NS; 
(c) Nk+l = 0;and 
(d) p(S)x=fomp(t) dE(t)x, xGD 

for all polynomials p, where £(•) is a generalized spectral measure on 
D supported by <r(T) and commuting with any V(EB(X) which com-
mutes with T. 

This decomposition is "maximal-unique," meaning that if W is an 
invariant linear manifold for T for which (a)-(d) are valid with W 
replacing D, then WC.D and the transformations 5, N and E(b) 
(bÇzB) corresponding to W are the restrictions to W of the respective 
transformations associated with D. 

The proof uses a refinement of the method we applied in the proof 
of Theorem 3.13 in [3]. 

It turns out that D = Dk+2. For each xGD, the map f—*T(J)x of 
çk+2 j n t 0 x has an extension as a continuous linear map of Ck into 
D given by 

T(J)x = £ (l/jl) f ƒ<*(/) dE(f)N'x 

(for all ƒ G C* and each #£Z>). The extended map f-*T(J) of Ck into 
T(D) is multiplicative. 
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Keeping in mind the usual definition of a resolution of the identity, 
it is interesting to notice that if N (or S) is closable, then E(b) com­
mutes with 5 and N and E(aC\b) = E(a)E(b) for all a, &GJ3. This is 
true in particular if fe = 0, since iV = 0 (cf. (c)) is trivially closable. 

Theorem 2 may be given a version fitting into Dunford's theory of 
spectral operators [ l ] . Since D = Dk+2t D is a normed linear space 
under the norm ||#|| = | x\ k+2,T- Let us call its completion F the Jordan 
space for T. T induces in a natural way an operator 7Y£i3(F) . 

THEOREM 2'. Let T be as in Theorem 2 (with X not necessarily re­
flexive). Then (TV)* is spectral of class Y and type k. 

The case k = 0 has a distinguished position if X is a Hubert space. 
By Theorem 5 in [2], Condition (1) by itself is then sufficient for T 
to be spectral of scalar type. This is no longer true (in Hilbert space) 
for k è 1, even when <r(T) is a sequence with 0 as its only limit point. 
In Banach space (even reflexive) this breaks down even f or k = 0 (cf. 
[2, p. 176]). Let P(R) denote the ring of polynomials over R. Condi­
tion (1) for k = 0 is equivalent to the condition | e i p ( r ) | <M< 00 for 
all pÇE:P(R) of degree g l . Dropping this limitation on the degree, 
we get a criterion for spectrality which is valid in any weakly com­
plete Banach space. 

THEOREM 3. T(EB(X) is of class C and has real spectrum if and 
only if 

(2) sup J e*><r>| < 00. 

If X is weakly complete, Condition (2) is necessary and sufficient 
for T to be spectral of scalar type with real spectrum. 

The proof uses Theorem 2 in [4]. 
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