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Operators T with real spectrum in finite dimensional complex
Euclidian space may be characterized by the property

M |er| =o0(|¢]y),  treal

Our result is a Jordan decomposition theorem for operators T in
reflexive Banach space which satisfy (1) and whose spectrum (which
is real because of (1)) has linear Lebesgue measure zero.

1. The Jordan manifold. Let X be a complex Banach space; denote
by B(X) the Banach algebra of all bounded linear operators acting on
X. For m=0,1, 2, - - -, C™is the topological algebra of all complex
valued functions on the real line R with continuous derivatives up
to the order m, with pointwise operations and with the topology of
uniform convergence on every compact set of all such derivatives. Fix
TEB(X). Following [3], we say that T is of class C™ if there exists a
Cm-operational calculus for T, i.e., a continuous representation
f—T(f) of C™ into B(X) such that T(1) =1, T(f) =T if f(t)=t¢, and
T'(-) has compact support. The latter is then equal to the spectrum of
T, o(T). It is known that if T satisfies (1), then it is of class C™ for
m2k+2 and has real spectrum (cf. Lemma 2.11 in [3]).

From now on, let 7€ B(X) satisfy (1), and let T'(+) be the (unique)
Cm-operational calculus for T, for m fixed Zk+2. We write:

L |l mr= Eism maxeen [f9] /31, fFEC™;

2. |x|mz=sup{| T(Nx|; fEC, |f|mr=1}, xEX;

3. D= {xEX; xl,,.,1v< L };

4. D = Um;H.z Dm.

We call D the Jordan manifold for T. It is an invariant linear mani-
fold for any V& B(X) which commutes with 7. If ¢(7T) is a finite
union of points and closed intervals, then there exists an m =k42
such that D=D,=X. This is true for m=k+2 if ¢(7) is a finite
point set. It follows in particular that Di,. contains every finite di-
mensional invariant subspace for T, hence all the eigenvectors of T.
It is also true that D contains all the root vectors for T, and is there-
fore dense in X if the root vectors are fundamental in X.

THEOREM 1. Suppose that all nonzero points of o(T) are isolated.
891



892 SHMUEL KANTOROVITZ [November

Then the closure of Do contains the closed range of T**t'. For k=0 and
X reflexive, D, is dense in X.

2. The Jordan decomposition. If W is a linear manifold in X, we
denote by T(W) the algebra of all linear transformations of X with
domain W and range contained in W.

Let B denote the Borel field of R.

A generalized spectral measure on W is a map E(-) of B into T(W)
such that

(1) E(R)x=x for all x€W, and

(ii) E(-)x is a bounded regular strongly countably additive vector
measure on B, for each x& W.

We can state now our generalization of the classical Jordan decom-
position theorem for complex matrices with real spectrum to infinite
dimensional Banach spaces.

THEOREM 2. Let X be a reflexive Banach space. Let TE B(X) satisfy
(1). Suppose o(T) (which lies on R because of (1)) has linear Lebesgue
measure zero. Let D be the Jordan manifold for T. Then there exist S
and N in T(D) such that

(a) T/D=S+N;

(b) SN=NS;

(c) N¥+t1=0; and

(d) p(S)x=femp(t) dE(t)x, xED
for all polynomials p, where E(-) is a generalized spectral measure on
D supported by o(T) and commuting with any VEB(X) which com-
mutes with T.

This decomposition is “maximal-unique,” meaning that if Wis an
invariant linear manifold for T for which (a)-(d) are valid with W
replacing D, then WCD and the transformations S, N and E(b)
(bEB) corresponding to W are the restrictions to W of the respective
transformations associated with D.

The proof uses a refinement of the method we applied in the proof
of Theorem 3.13 in [3].

It turns out that D =Djy,. For each x&D, the map f—T(f)x of
C¥*2 into X has an extension as a continuous linear map of C* into
D given by

e =S [ o0 dzoNs

isk

(for all fEC* and each x& D). The extended map f—T(f) of C* into
T(D) is multiplicative.
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Keeping in mind the usual definition of a resolution of the identity,
it is interesting to notice that if N (or S) is closable, then E(b) com-
mutes with S and N and E(aM\b) =E(a)E(®) for all a, b&B. This is
true in particular if k=0, since N=0 (cf. (c)) is trivially closable.

Theorem 2 may be given a version fitting into Dunford’s theory of
spectral operators [1]. Since D =Dy, D is a normed linear space
under the norm ||%|| = | x| k42,7. Let us call its completion ¥ the Jordan
space for T. T induces in a natural way an operator Ty&B(Y).

THEOREM 2'. Let T be as in Theorem 2 (with X not necessarily re-
flexive). Then (Ty)* is spectral of class Y and type k.

The case k=0 has a distinguished position if X is a Hilbert space.
By Theorem 5 in [2], Condition (1) by itself is then sufficient for T
to be spectral of scalar type. This is no longer true (in Hilbert space)
for k=1, even when ¢(7T) is a sequence with 0 as its only limit point,
In Banach space (even reflexive) this breaks down even for k=0 (cf.
[2, p. 176]). Let P(R) denote the ring of polynomials over R. Condi-
tion (1) for 2=0 is equivalent to the condition |e"P(T>] <M< = for
all pEP(R) of degree =1. Dropping this limitation on the degree,
we get a criterion for spectrality which is valid in any weakly com-
plete Banach space.

THEOREM 3. TEB(X) s of class C and has real spectrum if and
only if
2 sup || < w,
?eP(R)
If X is weakly complete, Condition (2) is necessary and sufficient

for T to be spectral of scalar type with real spectrum.
The proof uses Theorem 2 in [4].
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