A JORDAN DECOMPOSITION FOR OPERATORS IN BANACH SPACE

BY SHMUEL KANTOROVITZ
Communicated by F. Browder, June 30, 1965

Operators T with real spectrum in finite dimensional complex Euclidian space may be characterized by the property

$$
\begin{equation*}
\left|e^{i t T}\right|=O\left(|t|^{k}\right), \quad t \text { real. } \tag{1}
\end{equation*}
$$

Our result is a Jordan decomposition theorem for operators T in reflexive Banach space which satisfy (1) and whose spectrum (which is real because of (1)) has linear Lebesgue measure zero.

1. The Jordan manifold. Let X be a complex Banach space; denote by $B(X)$ the Banach algebra of all bounded linear operators acting on X. For $m=0,1,2, \cdots, C^{m}$ is the topological algebra of all complex valued functions on the real line R with continuous derivatives up to the order m, with pointwise operations and with the topology of uniform convergence on every compact set of all such derivatives. Fix $T \in B(X)$. Following [3], we say that T is of class C^{m} if there exists a C^{m}-operational calculus for T, i.e., a continuous representation $f \rightarrow T(f)$ of C^{m} into $B(X)$ such that $T(1)=I, T(f)=T$ if $f(t) \equiv t$, and $T(\cdot)$ has compact support. The latter is then equal to the spectrum of $T, \sigma(T)$. It is known that if T satisfies (1), then it is of class C^{m} for $m \geqq k+2$ and has real spectrum (cf. Lemma 2.11 in [3]).

From now on, let $T \in B(X)$ satisfy (1), and let $T(\cdot)$ be the (unique) C^{m}-operational calculus for T, for m fixed $\geqq k+2$. We write:

1. $|f|_{m, T}=\sum_{j \leq m} \max _{\sigma(T)}\left|f^{(j)}\right| / j!, f \in C^{m}$;
2. $|x|_{m, T}=\sup \left\{|T(f) x| ; f \in C^{m},|f|_{m, T} \leqq 1\right\}, x \in X$;
3. $D_{m}=\left\{x \in X ;|x|_{m, T}<\infty\right\}$;
4. $D=\mathrm{U}_{m 2 k+2} D_{m}$.

We call D the Jordan manifold for T. It is an invariant linear manifold for any $V \in B(X)$ which commutes with T. If $\sigma(T)$ is a finite union of points and closed intervals, then there exists an $m \geqq k+2$ such that $D=D_{m}=X$. This is true for $m=k+2$ if $\sigma(T)$ is a finite point set. It follows in particular that D_{k+2} contains every finite dimensional invariant subspace for T, hence all the eigenvectors of T. It is also true that D contains all the root vectors for T, and is therefore dense in X if the root vectors are fundamental in X.

Theorem 1. Suppose that all nonzero points of $\sigma(T)$ are isolated.

Then the closure of D_{k+2} contains the closed range of T^{k+1}. For $k=0$ and X reflexive, D_{2} is dense in X.
2. The Jordan decomposition. If W is a linear manifold in X, we denote by $T(W)$ the algebra of all linear transformations of X with domain W and range contained in W.

Let B denote the Borel field of R.
A generalized spectral measure on W is a map $E(\cdot)$ of B into $T(W)$ such that
(i) $E(R) x=x$ for all $x \in W$, and
(ii) $E(\cdot) x$ is a bounded regular strongly countably additive vector measure on B, for each $x \in W$.

We can state now our generalization of the classical Jordan decomposition theorem for complex matrices with real spectrum to infinite dimensional Banach spaces.

Theorem 2. Let X be a reflexive Banach space. Let $T \in B(X)$ satisfy (1). Suppose $\sigma(T)$ (which lies on R because of (1)) has linear Lebesgue measure zero. Let D be the Jordan manifold for T. Then there exist S and N in $T(D)$ such that
(a) $T / D=S+N$;
(b) $S N=N S$;
(c) $N^{k+1}=0$; and
(d) $p(S) x=\int_{\sigma(T)} p(t) d E(t) x, x \in D$
for all polynomials p, where $E(\cdot)$ is a generalized spectral measure on D supported by $\sigma(T)$ and commuting with any $V \in B(X)$ which commutes with T.

This decomposition is "maximal-unique," meaning that if W is an invariant linear manifold for T for which (a)-(d) are valid with W replacing D, then $W \subset D$ and the transformations S, N and $E(b)$ ($b \in B$) corresponding to W are the restrictions to W of the respective transformations associated with D.

The proof uses a refinement of the method we applied in the proof of Theorem 3.13 in [3].

It turns out that $D=D_{k+2}$. For each $x \in D$, the map $f \rightarrow T(f) x$ of C^{k+2} into X has an extension as a continuous linear map of C^{k} into D given by

$$
T(f) x=\sum_{j \leq k}(1 / j!) \int_{\sigma(T)} f^{(j)}(t) d E(t) N^{j} x
$$

(for all $f \in C^{k}$ and each $x \in D$). The extended map $f \rightarrow T(f)$ of C^{k} into $T(D)$ is multiplicative.

Keeping in mind the usual definition of a resolution of the identity, it is interesting to notice that if N (or S) is closable, then $E(b)$ commutes with S and N and $E(a \cap b)=E(a) E(b)$ for all $a, b \in B$. This is true in particular if $k=0$, since $N=0$ (cf. (c)) is trivially closable.

Theorem 2 may be given a version fitting into Dunford's theory of spectral operators [1]. Since $D=D_{k+2}, D$ is a normed linear space under the norm $\|x\|=|x|_{k+2, T}$. Let us call its completion Y the Jordan space for $T . T$ induces in a natural way an operator $T_{Y} \in B(Y)$.

Theorem 2'. Let T be as in Theorem 2 (with X not necessarily reflexive). Then $\left(T_{Y}\right)^{*}$ is spectral of class Y and type k.

The case $k=0$ has a distinguished position if X is a Hilbert space. By Theorem 5 in [2], Condition (1) by itself is then sufficient for T to be spectral of scalar type. This is no longer true (in Hilbert space) for $k \geqq 1$, even when $\sigma(T)$ is a sequence with 0 as its only limit point. In Banach space (even reflexive) this breaks down even for $k=0$ (cf. [2, p. 176]). Let $P(R)$ denote the ring of polynomials over R. Condition (1) for $k=0$ is equivalent to the condition $\left|e^{i p(T)}\right|<M<\infty$ for all $p \in P(R)$ of degree $\leqq 1$. Dropping this limitation on the degree, we get a criterion for spectrality which is valid in any weakly complete Banach space.

Theorem 3. $T \in B(X)$ is of class C and has real spectrum if and only if

$$
\begin{equation*}
\sup _{p \in P(R)}\left|e^{i p(T)}\right|<\infty . \tag{2}
\end{equation*}
$$

If X is weakly complete, Condition (2) is necessary and sufficient for T to be spectral of scalar type with real spectrum.

The proof uses Theorem 2 in [4].

References

1. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274.
2. S. Kantorovitz, On the characterization of spectral operators, Trans. Amer. Math. Soc. 111 (1964), 152-181.
3. -, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224.
4. E. Nelson, A functional calculus using singular Laplace integrals, Trans. Amer. Math. Soc. 88 (1958), 400-413.

Yale University

