A JORDAN DECOMPOSITION FOR OPERATORS IN BANACH SPACE

BY SHMUEL KANTOROVITZ

Communicated by F. Browder, June 30, 1965

Operators T with real spectrum in finite dimensional complex Euclidian space may be characterized by the property

(1)
$$|e^{itT}| = O(|t|^k), \quad t \text{ real.}$$

Our result is a Jordan decomposition theorem for operators T in reflexive Banach space which satisfy (1) and whose spectrum (which is real because of (1)) has linear Lebesgue measure zero.

1. The Jordan manifold. Let X be a complex Banach space; denote by B(X) the Banach algebra of all bounded linear operators acting on X. For $m = 0, 1, 2, \dots, C^m$ is the topological algebra of all complex valued functions on the real line R with continuous derivatives up to the order m, with pointwise operations and with the topology of uniform convergence on every compact set of all such derivatives. Fix $T \in B(X)$. Following [3], we say that T is of class C^m if there exists a C^m -operational calculus for T, i.e., a continuous representation $f \rightarrow T(f)$ of C^m into B(X) such that T(1) = I, T(f) = T if $f(t) \equiv t$, and $T(\cdot)$ has compact support. The latter is then equal to the spectrum of $T, \sigma(T)$. It is known that if T satisfies (1), then it is of class C^m for $m \geq k+2$ and has real spectrum (cf. Lemma 2.11 in [3]).

From now on, let $T \in B(X)$ satisfy (1), and let $T(\cdot)$ be the (unique) C^{m} -operational calculus for T, for m fixed $\geq k+2$. We write:

1. $|f|_{m,T} = \sum_{j \leq m} \max_{\sigma(T)} |f^{(j)}|/j!, f \in C^{m};$

2. $|x|_{m,T} = \sup\{|T(f)x|; f \in C^m, |f|_{m,T} \le 1\}, x \in X;$

- 3. $D_m = \{x \in X; |x|_{m,T} < \infty\};$
- 4. $D = \bigcup_{m \ge k+2} D_m$.

We call D the Jordan manifold for T. It is an invariant linear manifold for any $V \in B(X)$ which commutes with T. If $\sigma(T)$ is a finite union of points and closed intervals, then there exists an $m \ge k+2$ such that $D = D_m = X$. This is true for m = k+2 if $\sigma(T)$ is a finite point set. It follows in particular that D_{k+2} contains every finite dimensional invariant subspace for T, hence all the eigenvectors of T. It is also true that D contains all the root vectors for T, and is therefore dense in X if the root vectors are fundamental in X.

THEOREM 1. Suppose that all nonzero points of $\sigma(T)$ are isolated.

Then the closure of D_{k+2} contains the closed range of T^{k+1} . For k=0 and X reflexive, D_2 is dense in X.

2. The Jordan decomposition. If W is a linear manifold in X, we denote by T(W) the algebra of all linear transformations of X with domain W and range contained in W.

Let B denote the Borel field of R.

A generalized spectral measure on W is a map $E(\cdot)$ of B into T(W) such that

(i) E(R)x = x for all $x \in W$, and

(ii) $E(\cdot)x$ is a bounded regular strongly countably additive vector measure on B, for each $x \in W$.

We can state now our generalization of the classical Jordan decomposition theorem for complex matrices with real spectrum to infinite dimensional Banach spaces.

THEOREM 2. Let X be a reflexive Banach space. Let $T \in B(X)$ satisfy (1). Suppose $\sigma(T)$ (which lies on R because of (1)) has linear Lebesgue measure zero. Let D be the Jordan manifold for T. Then there exist S and N in T(D) such that

(a) T/D = S + N;

(b) SN = NS;

(c) $N^{k+1}=0$; and

(d)
$$p(S)x = \int_{\sigma(T)} p(t) dE(t)x, x \in D$$

for all polynomials p, where $E(\cdot)$ is a generalized spectral measure on D supported by $\sigma(T)$ and commuting with any $V \in B(X)$ which commutes with T.

This decomposition is "maximal-unique," meaning that if W is an invariant linear manifold for T for which (a)-(d) are valid with W replacing D, then $W \subset D$ and the transformations S, N and E(b) ($b \in B$) corresponding to W are the restrictions to W of the respective transformations associated with D.

The proof uses a refinement of the method we applied in the proof of Theorem 3.13 in [3].

It turns out that $D = D_{k+2}$. For each $x \in D$, the map $f \to T(f)x$ of C^{k+2} into X has an extension as a continuous linear map of C^k into D given by

$$T(f)x = \sum_{j \leq k} (1/j!) \int_{\sigma(T)} f^{(j)}(t) dE(t) N^{j}x$$

(for all $f \in C^*$ and each $x \in D$). The extended map $f \to T(f)$ of C^* into T(D) is multiplicative.

Keeping in mind the usual definition of a resolution of the identity, it is interesting to notice that if N (or S) is closable, then E(b) commutes with S and N and $E(a \cap b) = E(a)E(b)$ for all $a, b \in B$. This is true in particular if k=0, since N=0 (cf. (c)) is trivially closable.

Theorem 2 may be given a version fitting into Dunford's theory of spectral operators [1]. Since $D = D_{k+2}$, D is a normed linear space under the norm $||x|| = |x|_{k+2,T}$. Let us call its completion Y the Jordan space for T. T induces in a natural way an operator $T_Y \in B(Y)$.

THEOREM 2'. Let T be as in Theorem 2 (with X not necessarily reflexive). Then $(T_{\rm Y})^*$ is spectral of class Y and type k.

The case k=0 has a distinguished position if X is a Hilbert space. By Theorem 5 in [2], Condition (1) by itself is then sufficient for T to be spectral of scalar type. This is no longer true (in Hilbert space) for $k \ge 1$, even when $\sigma(T)$ is a sequence with 0 as its only limit point. In Banach space (even reflexive) this breaks down even for k=0 (cf. [2, p. 176]). Let P(R) denote the ring of polynomials over R. Condition (1) for k=0 is equivalent to the condition $|e^{ip(T)}| < M < \infty$ for all $p \in P(R)$ of degree ≤ 1 . Dropping this limitation on the degree, we get a criterion for spectrality which is valid in any weakly complete Banach space.

THEOREM 3. $T \in B(X)$ is of class C and has real spectrum if and only if

(2)
$$\sup_{p \in P(\mathbb{R})} \left| e^{ip(T)} \right| < \infty.$$

If X is weakly complete, Condition (2) is necessary and sufficient for T to be spectral of scalar type with real spectrum.

The proof uses Theorem 2 in [4].

References

1. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274.

2. S. Kantorovitz, On the characterization of spectral operators, Trans. Amer. Math. Soc. 111 (1964), 152-181.

3. ——, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224.

4. E. Nelson, A functional calculus using singular Laplace integrals, Trans. Amer. Math. Soc. 88 (1958), 400-413.

YALE UNIVERSITY

893

1965]