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Operators T with real spectrum in finite dimensional complex 
Euclidian space may be characterized by the property 

(1) \eitT\ = 0 ( | / | * ) , /real. 

Our result is a Jordan decomposition theorem for operators T in 
reflexive Banach space which satisfy (1) and whose spectrum (which 
is real because of (1)) has linear Lebesgue measure zero. 

1. The Jordan manifold. Let X be a complex Banach space; denote 
by B(X) the Banach algebra of all bounded linear operators acting on 
X. For m = 0, 1, 2, • • • , Cm is the topological algebra of all complex 
valued functions on the real line R with continuous derivatives up 
to the order w, with pointwise operations and with the topology of 
uniform convergence on every compact set of all such derivatives. Fix 
T<ELB{X). Following [3], we say that T is of class Cm if there exists a 
O-operational calculus for T, i.e., a continuous representation 
f-*T(J) of O into B{X) such that T(l) =7 , T(f) = T if ƒ(*) = / , and 
T( •) has compact support. The latter is then equal to the spectrum of 
T, <r(T). It is known that if T satisfies (1), then it is of class Cm for 
m*zk+2 and has real spectrum (cf. Lemma 2.11 in [3]). 

From now on, let TÇîB(X) satisfy (1), and let T(-) be the (unique) 
O-operational calculus for T% for m fixed^k+2. We write: 

1. | / U . r « E i » m a x . ( n \f(i)\/JU feCm; 
2. U U , r = s u p { l r ( / ) x | ; / e C - , \f\m.r£l},xeX; 
3. Dm={xÇ:X; \x\mtT<(X> }ï 
4. D = \Jm*k+2Dm. 
We call D the Jordan manifold for T. It is an invariant linear mani

fold for any VÇzB(X) which commutes with T. If a(T) is a finite 
union of points and closed intervals, then there exists an m^k+2 
such that D = Dm = X. This is true for m = k + 2 if cr(T) is a finite 
point set. It follows in particular that Dk+2 contains every finite di
mensional invariant subspace for T, hence all the eigenvectors of T. 
It is also true that D contains all the root vectors for T, and is there
fore dense in X if the root vectors are fundamental in X. 

THEOREM 1. Suppose that all nonzero points of <r(T) are isolated. 
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Then the closure of Dk+2 contains the closed range of Tk+1. For k = 0 and 
X reflexive, D2 is dense in X. 

2. The Jordan decomposition. If W is a linear manifold in X, we 
denote by T(W) the algebra of all linear transformations of X with 
domain W and range contained in W. 

Let B denote the Borel field of R. 
A generalized spectral measure on W is a. map £(•) of B into T(W) 

such that 
(i) E(R)x = x for all xEW, and 
(ii) E(-)x is a bounded regular strongly countably additive vector 

measure on B, for each xÇzW. 
We can state now our generalization of the classical Jordan decom

position theorem for complex matrices with real spectrum to infinite 
dimensional Banach spaces. 

THEOREM 2. Let X be a reflexive Banach space. Let TÇzB(X) satisfy 
(1). Suppose a(T) (which lies on R because of (1)) has linear Lebesgue 
measure zero. Let D be the Jordan manifold for T. Then there exist S 
and N in T(D) such that 

(a) T/D = S+N; 
(b) SN = NS; 
(c) Nk+l = 0;and 
(d) p(S)x=fomp(t) dE(t)x, xGD 

for all polynomials p, where £(•) is a generalized spectral measure on 
D supported by <r(T) and commuting with any V(EB(X) which com-
mutes with T. 

This decomposition is "maximal-unique," meaning that if W is an 
invariant linear manifold for T for which (a)-(d) are valid with W 
replacing D, then WC.D and the transformations 5, N and E(b) 
(bÇzB) corresponding to W are the restrictions to W of the respective 
transformations associated with D. 

The proof uses a refinement of the method we applied in the proof 
of Theorem 3.13 in [3]. 

It turns out that D = Dk+2. For each xGD, the map f—*T(J)x of 
çk+2 j n t 0 x has an extension as a continuous linear map of Ck into 
D given by 

T(J)x = £ (l/jl) f ƒ<*(/) dE(f)N'x 

(for all ƒ G C* and each #£Z>). The extended map f-*T(J) of Ck into 
T(D) is multiplicative. 
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Keeping in mind the usual definition of a resolution of the identity, 
it is interesting to notice that if N (or S) is closable, then E(b) com
mutes with 5 and N and E(aC\b) = E(a)E(b) for all a, &GJ3. This is 
true in particular if fe = 0, since iV = 0 (cf. (c)) is trivially closable. 

Theorem 2 may be given a version fitting into Dunford's theory of 
spectral operators [ l ] . Since D = Dk+2t D is a normed linear space 
under the norm ||#|| = | x\ k+2,T- Let us call its completion F the Jordan 
space for T. T induces in a natural way an operator 7Y£i3(F) . 

THEOREM 2'. Let T be as in Theorem 2 (with X not necessarily re
flexive). Then (TV)* is spectral of class Y and type k. 

The case k = 0 has a distinguished position if X is a Hubert space. 
By Theorem 5 in [2], Condition (1) by itself is then sufficient for T 
to be spectral of scalar type. This is no longer true (in Hilbert space) 
for k è 1, even when <r(T) is a sequence with 0 as its only limit point. 
In Banach space (even reflexive) this breaks down even f or k = 0 (cf. 
[2, p. 176]). Let P(R) denote the ring of polynomials over R. Condi
tion (1) for k = 0 is equivalent to the condition | e i p ( r ) | <M< 00 for 
all pÇE:P(R) of degree g l . Dropping this limitation on the degree, 
we get a criterion for spectrality which is valid in any weakly com
plete Banach space. 

THEOREM 3. T(EB(X) is of class C and has real spectrum if and 
only if 

(2) sup J e*><r>| < 00. 

If X is weakly complete, Condition (2) is necessary and sufficient 
for T to be spectral of scalar type with real spectrum. 

The proof uses Theorem 2 in [4]. 
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