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We shall show that every bounded function on a paracompact 
space has a best approximation by continuous functions, and char
acterize the functions whose best approximators are unique. This is a 
special case of a measure-theoretic problem, whose setting is as fol
lows. Let X be a topological space and ju- a Borel measure on X which 
assigns positive mass to each nonempty open set, and has the prop
erty that /x(F) = 0 if Y intersects a neighborhood of each point in a 
/i-null set. The latter condition is automatically fulfilled if each open 
cover of X has a countable subcover. Let L00 be the space of essen
tially bounded real-valued ^-measurable functions on X, and give 
it the semi-norm ||/|| = essential sup | / | . The bounded continuous 
functions on X form a closed subspace C of L00. We say that g (EC is 
abest approximator to f <EL°°ii \\f—g\\ =dis t ( / , Q =inf {|l/-ft|| :h<EC}. 

If /G£°° and #£-X\ /* (*)=l im sup^s ƒ(;y) = inf {ess sup of ƒ 
over U: U is a neighborhood of x} ; /* = lim mlv^xf(y) has a similar 
definition. I t is easy to verify that the functions ƒ* and ƒ* are defined 
everywhere, and are upper semi-continuous (use) and lower semi-
continuous (lsc) respectively. 

PROPOSITION. If X is any topological space and /G£°°, then 
2 dist(/ f Q*d(f)=sup[f*(y)-f*(y): y EX}. 

PROOF. If f*(x) —ƒ*(#) >d(f) — e and g £ C then one or the other of 
lim supy_a; (f(y)— g(y)) and lim swpy^x (g(y)—f(y)) is greater than 

THEOREM I. If X is paracompact, then g<EC is a best approximator 
toftEL™ if, and only if,f* — hd(f)^g^f*+%d(f); every fEL™ has such 
a best approximator; and dist(/, C) = l/2d(f). 

PROOF. Since / * + è d ( / ) ^ / * — %d(f), the first pair of inequalities 
is equivalent to the condition that for every €>0 and every x £ I , 
there be a neighborhood Uol x such that (ess sup|/(;y) — g(y) | : y G U) 
^ 2 ^ ( / ) + € - This in turn is equivalent to the assertion that for 
every e > 0 , \f(y)— g(y)\ > f d ( / ) + € only on a /x-null set, which says 
tha t | | / - -g | | ^ èd ( / ) . I t remains only to show that there is a con
tinuous function which satisfies these inequalities. Since ƒ* — %d(f) 
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is use and f* + %d(f) is lsc, this follows from the Interposition 
Theorem of Dieudonné [l , p. 75]. 

THEOREM 2. If X is a normal Hausdorff space then an element f (EL™ 
has exactly one best approximator in C if, and only if, ƒ * — ƒ* is a constant 
function. 

PROOF. If ƒ*— ƒ* is constant, then the function g=f* — %d(f) 
=f*+%d(f) is both lsc and use, and hence is continuous. As in 
Theorem 1, ||/—g|| =dis t ( / , C)> and no other element of C has this 
property. Conversely, we must show that if/* — ƒ* is not constant and 
ƒ has a best approximator g in C, then it has more than one. If 
ƒ*— ƒ* is not constant, we can choose an e > 0 and an x<EX such that 
f*(x)+%d(f)— (f*(x)— %d(f)) =e . Since g is continuous and ƒ* and 
ƒ* are semi-continuous, there is a neighborhood U of x on which 
\g(y)-g(*)\<*/6, ƒ*(?)>ƒ•(*) -« /6 and f*(y)<f*(x)+e/6. Since 
{x\ is closed and X is normal, Urysohn's Lemma asserts the exis
tence of a non-negative function £ £ C such that \\p\\ = e/6 and that p 
vanishes outside U. One or the other of the inequalities f*(x)+%d(f) 
— e/2^g(x) and g(x)^f*(x)—id(f)+e/2 must hold, so that either 

f*(y)+id(f)~*/6>g(y) or g(y) > ƒ * ( ? ) - # ( / ) + e / 6 on U. Ac
cording to which is the case, put h = g+p so that g^h^Lf*-\-\d{f) 
on U, or h = g—p so that ƒ* — \d{f)^h^g on Z7; & = g on the com
plement of U. Then h is also a best approximator to ƒ out of C. 

If /x is the measure which assigns mass 1 to every point in X, then 
it certainly assigns positive mass to each nonempty open set, and 
mass 0 to each set which intersects a neighborhood of every point 
in a set of measure 0. In this case, L00 is the Banach space of all 
bounded functions on X, and || || is the supremum norm. Theorems 1 
and 2 thus solve, as a special case, the problem of approximating 
bounded functions by continuous functions in the uniform norm. 
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