APPROXIMATION OF BOUNDED FUNCTIONS BY CONTINUOUS FUNCTIONS

BY B. R. KRIPKE AND R. B. HOLMES

Communicated by V. Klee, June 15, 1965

We shall show that every bounded function on a paracompact space has a best approximation by continuous functions, and characterize the functions whose best approximators are unique. This is a special case of a measure-theoretic problem, whose setting is as follows. Let X be a topological space and μ a Borel measure on X which assigns positive mass to each nonempty open set, and has the property that $\mu(Y) = 0$ if Y intersects a neighborhood of each point in a μ -null set. The latter condition is automatically fulfilled if each open cover of X has a countable subcover. Let L^{∞} be the space of essentially bounded real-valued μ -measurable functions on X, and give it the semi-norm ||f|| =essential sup |f|. The bounded continuous functions on X form a closed subspace C of L^{∞} . We say that $g \in C$ is a *best approximator* to $f \in L^{\infty}$ if $||f-g|| = \text{dist}(f, C) = \inf \{||f-h|| : h \in C\}$.

If $f \in L^{\infty}$ and $x \in X$, $f^*(x) = \lim_{y \to x} \sup_{y \to x} f(y) = \inf_{x \to y} \{ express up of f over U: U is a neighborhood of x \}$; $f_* = \lim_{y \to x} \inf_{y \to x} f(y)$ has a similar definition. It is easy to verify that the functions f^* and f_* are defined everywhere, and are upper semi-continuous (usc) and lower semicontinuous (lsc) respectively.

PROPOSITION. If X is any topological space and $f \in L^{\infty}$, then 2 dist $(f, C) \ge d(f) = \sup \{f^*(y) - f_*(y) : y \in X\}.$

PROOF. If $f^*(x) - f_*(x) > d(f) - \epsilon$ and $g \in C$ then one or the other of $\lim \sup_{y \to x} (f(y) - g(y))$ and $\lim \sup_{y \to x} (g(y) - f(y))$ is greater than $\frac{1}{2}(d(f) - \epsilon)$.

THEOREM 1. If X is paracompact, then $g \in C$ is a best approximator to $f \in L^{\infty}$ if, and only if, $f^* - \frac{1}{2}d(f) \leq g \leq f_* + \frac{1}{2}d(f)$; every $f \in L^{\infty}$ has such a best approximator; and dist(f, C) = 1/2d(f).

PROOF. Since $f_* + \frac{1}{2}d(f) \ge f^* - \frac{1}{2}d(f)$, the first pair of inequalities is equivalent to the condition that for every $\epsilon > 0$ and every $x \in X$, there be a neighborhood U of x such that (ess $\sup |f(y) - g(y)| : y \in U$) $\le \frac{1}{2}d(f) + \epsilon$. This in turn is equivalent to the assertion that for every $\epsilon > 0$, $|f(y) - g(y)| > \frac{1}{2}d(f) + \epsilon$ only on a μ -null set, which says that $||f-g|| \le \frac{1}{2}d(f)$. It remains only to show that there is a continuous function which satisfies these inequalities. Since $f^* - \frac{1}{2}d(f)$ is use and $f_* + \frac{1}{2}d(f)$ is lsc, this follows from the Interposition Theorem of Dieudonné [1, p. 75].

THEOREM 2. If X is a normal Hausdorff space then an element $f \in L^{\infty}$ has exactly one best approximator in C if, and only if, $f^* - f_*$ is a constant function.

PROOF. If $f^* - f_*$ is constant, then the function $g = f^* - \frac{1}{2}d(f)$ $=f_*+\frac{1}{2}d(f)$ is both lsc and usc, and hence is continuous. As in Theorem 1, ||f-g|| = dist(f, C), and no other element of C has this property. Conversely, we must show that if $f^* - f_*$ is not constant and f has a best approximator g in C, then it has more than one. If $f^* - f_*$ is not constant, we can choose an $\epsilon > 0$ and an $x \in X$ such that $f_*(x) + \frac{1}{2}d(f) - (f^*(x) - \frac{1}{2}d(f)) = \epsilon$. Since g is continuous and f^* and f_* are semi-continuous, there is a neighborhood U of x on which $|g(y) - g(x)| < \epsilon/6, f_*(y) > f_*(x) - \epsilon/6 \text{ and } f^*(y) < f^*(x) + \epsilon/6.$ Since $\{x\}$ is closed and X is normal, Urysohn's Lemma asserts the existence of a non-negative function $p \in C$ such that $||p|| = \epsilon/6$ and that p vanishes outside U. One or the other of the inequalities $f_*(x) + \frac{1}{2}d(f)$ $-\epsilon/2 \ge g(x)$ and $g(x) \ge f^*(x) - \frac{1}{2}d(f) + \epsilon/2$ must hold, so that either $f_*(y) + \frac{1}{2}d(f) - \epsilon/6 > g(y)$ or $g(y) > f^*(y) - \frac{1}{2}d(f) + \epsilon/6$ on U. According to which is the case, put h=g+p so that $g \leq h \leq f_* + \frac{1}{2}d(f)$ on U, or h=g-p so that $f^*-\frac{1}{2}d(f) \leq h \leq g$ on U; h=g on the complement of U. Then h is also a best approximator to f out of C.

If μ is the measure which assigns mass 1 to every point in X, then it certainly assigns positive mass to each nonempty open set, and mass 0 to each set which intersects a neighborhood of every point in a set of measure 0. In this case, L^{∞} is the Banach space of all bounded functions on X, and $\| \|$ is the supremum norm. Theorems 1 and 2 thus solve, as a special case, the problem of approximating bounded functions by continuous functions in the uniform norm.

Reference

1. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. 23 (1944), 65-76.

UNIVERSITY OF CALIFORNIA, BERKELEY AND WRIGHT-PATTERSON AIR FORCE BASE, OHIO