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1. Introduction. By a C00 Lie algebra of operators on a Banach 
space X we shall mean a pair (g, 3D) consisting of (a) a dense 
linear subset ("domain") 3D of the space 9C and (b) a finite dimen­
sional real vector space g of operators X, Y,Z • • • defined on 3D such 
that X3DC3D for all XEg ("C" condition*) and such that the com­
mutator Lie product [X, Y]=XY— YX carries gXg into g. 

It is well known that every strongly continuous representation U 
of a Lie group G on 9C gives rise to a number of different domains 3D 
of C00 vectors for U on which the Lie algebra g of G may be repre­
sented to give such a C00 Lie algebra (g, 3D) (cf. Segal [10], Gârding 
[4], Harish-Chandra [S], Cartier and Dixmier [2] and Nelson [8]). 
Here U(G) is a generalized exponential of (g, 3D). Therefore we will 
call a C00 Lie algebra of operators exponentiable in case the simply 
connected Lie group G whose Lie algebra is isomorphic with g has a 
strongly continuous representation U on X such that when ƒ G 3D: 

(1) lim r*[ tf (exp tX)f - ƒ] - Xf 

(here we have identified (g, 3D) with the Lie algebra of G). We will 
discuss the question: When is a C00 Lie algebra of operators on 3D 
exponentiable? Nelson [8] gives a sufficient condition for the case of 
a Lie algebra of skew-symmetric operators on a Hilbert space H. 

An operator X will be called a pregenerator on 3D in case it has a 
closure X generating a strongly continuous one parameter group of 
operators in the sense of Hille and Phillips [ô] (denoted by U[t, X] 
here). Sufficient conditions for this are given in [6]. A counter-exam­
ple of Nelson [8] refutes the natural conjecture that every C00 Lie 
algebra of pregenerators (each individually exponentiable) is ex­
ponentiable in the sense discussed above. We give a number of differ­
ent sufficient conditions for the exponentiability of C00 Lie algebras 
of pregenerators on Banach spaces. Various of the results can be 
extended to suitably defined uCl1> and "C2" Lie algebras. 

1 This work was supported in part by the National Science Foundation, both 
through a Fellowship and through NSF GT 1611. Several of the results obtained form 
a part of a dissertation submitted to Princeton University in candidacy for the degree 
of Ph.D. The author extends his thanks to Professor E. Nelson for his many sugges­
tions and encouragement. 
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2. Results. We make extensive use of an auxiliary Banach space, 
9C1. 

DEFINITION. Let X\f • • • , Xn be a basis for the C00 Lie algebra of 
pregenerators (g, 3)). Then on f|?-i $>(Xi) we may define 

(2) iwii- ii/ii + ±\mi 
The space 9C1 is the closure of 3D in this norm, as a subset of the obvi­
ously complete space fl?-i £>(Xd* 

It is not difficult to show that 9C1 is independent of the choice of 
basis; different bases give equivalent 1-norms for 9C1. More important, 
each X(£g extends in a natural way to a member of (B(9CS 9C), the 
bounded operators from 9C1 to 9C (we will denote this extension by X 
also). Since g is finite dimensional, the ©(SC1, 9C) norm, |||-Xi||, deter­
mines the unique usual topology of g; this observation is instrumental 
in several of the proofs discussed below in paragraph 3. 

The fundamental result of the theory requires conditions on both 
the global groups and their infinitesimal pregenerators: 

THEOREM 1. A C°° Lie algebra of pregenerators is exponentiable when­
ever the following three conditions hold: 

(A) £/[/, X] leaves 9C1 invariant, for all t£.R and XGg, 
(B) for X and Y in g, tER and f EX1 

(3) U[t9 X] YU[-t, X]f « expo ad X)(Y)f 

where ad X(Y) =XY- YX, and 
(C) || U[t, X]\\ : RXg->R is locally bounded at (0, 0). 

Conditions (A) and (B) are difficult to check in applications; they 
may be replaced by a more natural pair of the same semi-global type: 

THEOREM 2. A C00 Lie algebra of pregenerators is exponentiable when­
ever 

(A') U[t, X] leaves 3D invariant, for all t and X, 
(B') for jfE3) and any X and Y in g, \\YU[t, X]f\\ is locally 

bounded at J = 0, and 
(C) || £/[/, X]\\ : RXg->R is locally bounded at (0, 0). 

In the case of a finite dimensional Lie algebra g of (C°°) vector fields 
on a manifold M, the invariance condition (A') and the weak 
"smoothness" condition (B') are natural, and (C) is automatic; this 
provides the best example of an application of Theorem 2. More spe­
cifically, we regard g to be defined on the natural domain of 3) of C00 

functions with compact support. 3) is dense in the Banach algebra 
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9C = Co(Af) of continuous functions vanishing at oo on M. The as­
sumption "X is a pregenerator" means that X generates a one param­
eter Lie transformation group on M which acts on C0(M) by "transla­
tion" to provide a group of isometric automorphisms, U[tf X] on 
Co(Jlf). 

Both invariance of 3D and the smoothness condition (B') are easy 
consequences of the compact support of each /£3D and of Lie's 
Hauptsatz (local). Theorem 2 then insures that a finite dimensional 
Lie algebra of "pregenerator" vector fields exponentiates to give a 
global representation of G as a group of isometric automorphisms of 
CQ(M) ; this can be shown to arise from an action of G as a Lie trans­
formation group on M. 

A result of purely infinitesimal type is also useful. 
THEOREM 3. A C00 Lie algebra of pregenerators is exponentiable when­

ever 
(A"-B") for each XÇzg there exists a U)1(X)^0 such that when 

|X| >col(X), ÇK—X) is dense in 9C1, and 
(C) || U[t, X]\\ : RXg-+R is locally bounded at (0, 0). 

If the resolvent (X—X)"1 leaves the domain 3D invariant, for suit­
ably large | \ | , an important special case of Theorem 3 is obtained 
(3D is dense in 9C1 by construction). The full strength of Theorem 3 is 
required in order to give an infinitesimal construction of the irreduci­
ble unitary representations of classical groups such as the Lorentz 
group, on an abstract Hilbert space. Every such representation is the 
direct sum of finite dimensional irreducible representations of a max­
imal compact subgroup; one chooses an orthonormal basis for the 
Hilbert space 9C from suitably chosen bases for these finite dimen­
sional representations. As several authors have shown (e.g.: Barg-
mann [l] , Dixmier [3]) it is then possible to define the entire Lie 
algebra g for the representation on the set 3D of finite linear combina­
tions of basis elements so that (g, 3D) is a C00 Lie algebra. Proofs that 
each XÇzg so defined is a pregenerator (essentially skew adjoint) are 
standard, but this also follows from (A" — B") once this is verified. 
One proceeds by modifying equation (2) in a natural way to convert 
9C1 into a Hilbert space, relates the inner product on 9C1 to that of 9C, 
then employs the commutation properties of g on 3D to verify that 
there is no vector in 9C1 orthogonal to (X—X)3D. The computations 
involved make this method of infinitesimal construction much more 
tedious than the application of the theorem of Nelson mentioned 
above (illustrated in Dixmier [3]). 

In both of the examples discussed above, condition (C) follows 
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easily from the nature of the groups involved. In general, it is valu­
able to remove this condition. 

THEOREM 4. Let (g, 3D) be a C" Lie algebra of pregenerators. If 
(A)-(B), (A')-(B') or (A" -B") hold then (g, £>) is exponentiable 
and (C) holds automatically. 

3. Discussion of proofs. Theorems 2 and 3 are obtained from Theo­
rem 1 by showing that conditions (A') — (B') imply A and B, and sim­
ilarly that (A" — B") implies A and B. The latter implication is 
established by means of resolvents and Laplace transforms. 

Theorems 1 and 4 are proved independently. To establish either 
of these results, we use the type of argument outlined in Theorem 63 
of Pontrjagin [9] to show that we need only obtain a strongly con­
tinuous local representation of G. This local representation is defined 
on the domain of exp"1: G—>g by 

(4) tf(exp(*X)) = U[t, X]. 

Three different arguments are available for obtaining this local ex-
ponentiability of g from conditions (A) and (B) ; each requires some 
special auxiliary assumption as follows: 

(1) g is semisimple, or 
(2) g is either solvable or the direct sum of an exponentiable ideal 

and an exponentiable subalgebra, or 
(3) g is arbitrary but satisfies condition (C). 

Theorem 4 follows from arguments (1) and (2), coupled with Levi's 
theorem on the decomposition of an arbitrary g into a semisimple sub-
algebra and a solvable ideal (Jacobson [7, p. 91]). 

Argument 3, on the other hand, is quite elementary and avoids all 
structural considerations. We outline it here, in view of its applica­
tion to the important cases in the literature mentioned above. 

Strong continuity of the representation is obtained as a by-product 
of the proof that the map defined by (4) is locally an algebraic iso­
morphism. If we write Z(X, tY) =exp~1(exp(Z)exp(^F)) wherever 
the right hand side is defined (Z can be computed in terms of the 
structure constants of g by the Campbell-Hausdorff formula), we 
have the desired isomorphism iff 

(5) U[l,X]U[l,Y] = U[l,Z(X,tY)], 

or equivalently, for each vector ƒ G £ 

(5') k(t)f = U[l, X]U[t, Y]U[-1, Z(X, IF)]/ - ƒ. 

Equation (5') is verified for ƒ in dense 9C1 by the simple expedient of 
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computing its /-derivative and showing that this vanishes identically 
for / in a suitable range. It is not difficult to show that k(0)f=ƒ, so 
we conclude that £(/)ƒ=ƒ for all t in this range; extension to arbitrary 
ƒ is immediate. 

The verification that k(t)f is differentiate in /, with vanishing 
derivative, is technical. Details will be published elsewhere. Modulo 
a straightforward verification that the "product rule" applies to the 
differentiation of U[t, Y]U[ — 1, Z(X, tY)]f, the proof depends upon 
a calculation of the derivative 

(6) — (CT[-1, Z{X, tY)]f) = F(t9 X, 7)U[-1, Z(X, IF)] / , 
at 

where F: RXgXg—*g is determined entirely by the structure con­
stants of g qua abstract Lie algebra. The exact form of equation (6) 
is obtained by integration from condition (B), using a generalization 
of a device of Yosida [ l l ] : 

(7) U[s,Z1]f- U[s,Z%]f=* f V[r,Zi](Zi - Z2)U[s - r,Z2]fdr 
Jo 

valid for/G9C1. Strong continuity follows from (7) and (C). 
One then shows that the vanishing of (d/dt)k(t)f depends entirely 

upon whether Y+F(tt X, Y) vanishes; this fact concerns only the 
structure of g. This is verified by the observation that if one begins 
with a known locally faithful representation of G where (5') holds, 
and repeats the argument, the corresponding faithful representative 
of F + F(t, X, Y) must vanish. The faithful local finite dimensional 
representation obtained by exponentiating Ado's faithful finite di­
mensional representation of g provides a convenient analytic repre­
sentation for this purpose (cf. Jacobson [7, p. 202]). 
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1. Introduction. Let B = {z; sEQo, p(z) < 0 } be a bounded domain 
in Cn, where p£C2(So), O0 a neighborhood of 0, and let grad p^O 
on dB. As is well known, if Q is a domain of holomorphy then for any 

» d*p(x°) » dp(x°) 
(1) L(p(xP), w) ss 2L, — wpûk è 0 whenever 2-r wi ~ 0» 

/,*=a dZjdZk y-i dZj 

and, if (1) holds with strict inequality (for w?*Ö) then Î2 is a domain of 
holomorphy. (1) is called the Levi condition (LC) and, in case of strict 
inequality, the strict LC. One of the consequences of the present work 
is that the above statement remains true if the assumption pGC 2 is 
replaced by pG-ff2'00 (see §2). 

In what follows Q is always given by p as above, where pECK^o), 
grad p9^0 on 50. 

2. Definitions. If p has second weak derivatives which belong to 
i>(üo) (1 <p< °°) then we say that Q and p belong to H2>p. Actually 
we shall only need the derivatives d2p/dzjdzk to belong to Z>, but then 

1 This work was partially supported by the Alfred P. Sloan Foundation and by 
Nasa Grant NGR 14-007-021. 


