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In this paper we introduce an integral of the form fu{f^ dp,) where 
M is a multilinear operator from the product of the Banach spaces 
Yji, Zj 0 = 1» • • • , m, i = l , • • • , kj) into a Banach space W, and 

fji are Lebesgue-Bochner summable functions, and \ij are vector vol
umes. 

The above integral is a generalization of the integral fu(f, dji) 
developed in [ l ] . An integral similar to the last integral, developed 
in a different way, one can find in Bourbaki [10, Chapter V, p. 48 -
49]. For applications, see the following paper in this volume. 

1. Properties of vector volumes. Let R be the space of reals and 
Yit Ziy Wbe seminormed spaces. Denote by L(Yly • • • , Yk; W) the 
space of all ^-linear continuous operators u from the space Y\X • • • 
X Yk into the space W. The norms of elements in the above spaces 
will be denoted by | | . 

The family of sets V of an abstract space X will be called a prering 
if for any two sets Au A2Çz V we have -4 i f \4 2 G V and there exists 
disjoint sets Biy • • • , -#*£ V such that A1\A2 = B1\J • • • \JBk. 

A nonnegative function i i o n a prering V is called a positive volume 
or when there is no confusion just volume if it is countably additive, 
that is for every countable family of disjoint sets AtÇi V (tÇzT) such 
that A=UT AttEV we have v(A) = YlTv(At). 

A function fx from a prering V into a Banach space Z is called a 
vector volume or simply volume when there is no confusion possible 
if the function /* is finite additive on V and for some positive volume v 
we have 

| ix(A) | S v(A) for all i £ F . 

I t follows from this definition and from the definition of a prering 
that every volume is countably additive. 

THEOREM 1. Let Vi be a prering of sets of a space X{ (i = 1, • • • , fe). 
Denote by V= ViX • * • X Vk the family of all sets of the form A 
= ^4iX • • • XAk where A^Vi. Then V is a prering of sets of the 
space X = XiX • • • XXk. 

1 This work was partially supported by NSF grant GP-2565. 
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A triple (X, V, v), where F is a prering of sets of the space X and v 
is a positive volume on the prering F will be called a volume space. 

THEOREM 2. Let (Xiy Vit Vi) ( i = l , • • • , k) be volume spaces. Then 
the triple (X, F, v), where X = X i X • • • XXk, F = FiX • • • X Vk, 
and v(A)=vi(Ai) • • • ̂ (-4*) for A=AiX • • • X i * G F , is a volume 
space. The triple (X, F, v) will be called the product of the volume spaces 
(Xif Vit Vi). 

THEOREM 3. Let Vi be a prering of sets of a space Xi (i = 1, • • • , k). 
Let vbea positive volume on V= FiX • • • X F* and let pi(Ai, A2, • • • 
Ak) be a function from the prering V into a Banach space Z finite addi
tive with respect to every variable Ai separately. Then if 

| p(Ah • • • , Ak) | S v(Ax X • • • X Ah) forallAtX • • 'XAke F, 

the function ix defined by the formula ix{A\X • • • XAk)—ji(Ai, • • • ,Ak) 
is a vector volume on the prering V. 

Let (X, F, v) be a fixed volume space. Denote by M(v, Z) the set 
of all volumes /x from the prering F into the Banach space Z such that 

| ix{A) | g cv(A) for all AEV. 

The smallest constant satisfying the last inequality will be denoted 
by ||ju||. It is easy to see that the space (M(y, Z), || ||) is a Banach 
space. 

THEOREM 4. Let (X, F, v) be the product volume space of the volume 
spaces {Xh Vi9 t\-), ( i = l , • • • , & ) . If tiiE.M{Vi, Z») for i = l, • • • , & 
awd u(EL(Ziy • • • , Z/i,; WO then JJL(EM(V, W) and \\JJ\\^\U\\\JJLI\\ • • • 
||/i*|| «/A*re /x(^4iX • • • X - 4 * ) = « ( A H ( - 4 I ) , • • • , M*(^*)) /^r a/Z ^ G F . 

The proof of the theorem follows immediately from the previous 
one. 

2. Multilinear integrals and some relations between them. 

LEMMA 1. Let ( Ft-, | | »•) &£ a family of seminormed spaces and let Ei 
be a dense subspace of the space F»- (i = 1, • • • , k). If u is a k-linear 
operator from EiX • • * XEk into a Banach space W and 

I u(yu • • • , y*) | ^ I « I I y i | i ' * • I y*l* 
/or yiÇzEi ( i = 1, • • • , A) /Aen /Ae operator u has a unique extension to 
a k-linear operator u* such that \ u\y\, • • • , yk) | ^ | u\ \ yi\ i • • • |y k \ h 
îoryieYi(i=l, • - . , * ) . 

Denote by 5 ( F ) the family of all functions of the form 
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h = y\XAx-\- * * * +ykXAk, where ^4 ,GF is a finite family of disjoint 
sets and y»G F. 

In [ l ] was developed the theory of the space L(v, Y) of Lebesgue-
Bochner summable f unctions ƒ generated by a volume space (X, F, v) 
with values in a Banach space F. The set S{ Y) according to Lemma 1 
and Lemma 4, [ l ] is linear and dense in the space L(v, F). 

Let 

(Xjiy Vji9 vji) (j = 1, • • • , m\ i = 1, • • • , k5) 

be a family of volume spaces and let (X,-, Fy, v}) be the product of the 
above volume spaces corresponding to a fixed j . 

Let ubea, multilinear continuous operator from the product of the 
Banach spaces F^-, Zy (j = l, • • • , m\ i = l, • • • , kj) into a Banach 
space W. 

Let )UyEAf(fly, Zj) and ^ G 5 ( F i t ) . Take a representation 

SJi = 2~i ynjiXAn.^, 

where 

ynji G YH and Anji G Fyt-

are disjoint sets. Define 

I u(s}i, dnj) = £ ] £ Z) u(ynji, fij(Anjl X • • • X 4»iJbf)). 
•̂  i * »y.' 

I t is easy to see that the above operator is well defined, from the prod
uct of the spaces £7, S(Fyi), M(vj} Zj) (j = l, • • • , m; i = l, • • • , kj) 
into the space W and 

I f u(siiydN)\^ i « i ( n w ) n i y 
I « J I \ i* / j 

for all wG £7, * „ e S ( F „ ) , M;GM(^, Zj). 
Using Lemma 1 we can extend the above operator to an operator 

fu(fji, djjLj) defined on the product of the spaces U, L(vsi, 3/^), M(vj, Zj). 
Thus we have the following 

THEOREM 5. The operator fu(fjif dfij) is multilinear from the product 
of the spaces U, L(vji, F^), M(VJ, Zj) 0*=1, • • • , m; i = l, • • • , kt) 
into the space W and 

I/«a**.,) I * ui(nw)(nikii) 
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for all uÇEU,f3iEL(v3if Fy*), JJL3Q:M(V31 Z3). 

THEOREM 6. Let (X, F, v) be the product of volume spaces (X3, V3, v3) 
0 = 1» * • ' ,k) andletfjÇzL(vj, Y3). Let u beak-linear continuous oper
ator from the space Y\ X * • • X Yk into W. Then the function f defined 
by the formula 

f(xh • • • , Xk) = U(fi(%i), • • • ,ƒ*(**)) 

on the space X belongs to the space L(v, W) and 

11/11 g MINI ••-UMI-
Let (X, F, v) be the product of the volume spaces (Xj> V3, v3) 

where j = l, • • • , k. 
Let Fy, Z be Banach spaces. Consider a multilinear operator u 

from the space FiX • • • X YkXZ into a Banach space W. Define a 
new operator uQ from the space FXX • • XF& into the space 
Wo=L(Z; W) by means of the formula 

Uoiyi, * * • , Jk){z) = w(^i, • • • , yk, z) for y,- G F,-, z £ Z , 

I t is easy to see that the operator u0 is ^-linear and continuous. 
Now if 

f3 G L(v3, Fy) 

then according to the previous theorem we have 

f=Mfh • • ',fk)eL(v,Wo). 

Define a new operator ux by means of the formula 

ui(w, z) = 2£>(;s) for w G TFo, z G Z . 

THEOREM 7. If ixÇzM(v, Z) andf—u0(fu • • • » A), wo, w are defined 
as above then 

J *(/i> • ' ' ,fk,dn) = J ui(J, dy). 

Now let Fy, Zy (/ = 1, • • • , & ) be Banach spaces and let (X, F, t/) 
be the product of the volume spaces (X3, Fy, v3) (j = l, • • • , k). Let 

/y £ L(î>y, Fy) and /Zy G M(wy, Zy). 

Consider a multilinear continuous operator u from the product of the 
spaces Y3f Zy (j = l, • • • , &) into a Banach space IF. Let ^0 be an 
operator from the product of the spaces Z3 (j = l, • • • , k) into the 
space Wo=L(Yi, • • • , Yk\ W) defined by the formula 
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«o(*i, • • • , Zk)(yi, • • • ,yh) = u(yh • • • , yk, zh • • • z*) 

for s , e z < , y , e F,. 
I t is easy to see that the operator u0 is ^-linear and continuous. 

Thus from Theorem 4 we get 

M = «o0*i, * • • , M*) G M(v, W0). 

Let wi denote the multilinear continuous operator defined on the 
space FiX • • • X YkX W0 by means of the formula 

Mi(yi, • • • , y*, w) = w(^i, • • • , yk) for y, G Fy, w G Wo-

We have the following theorem. 

THEOREM 8. If ƒƒ££(#.,•, Y/) and JU = W0(MI> * * * > M*)> ^i ^ ^ defined 
as above, then 

I w(/i> *•*>ƒ*> ^Mi, • • • , M̂/b) = I wi(/i, • • - , ƒ * , <fyt). 

The last two theorems allow us to reduce any of the integrals to 
the following form fu(f, dp). In [5] has been shown how one can re
duce the integrals to iterated integrals by means of generalized Fu-
bini's Theorems. 
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