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In this paper we introduce an integral of the form [u(f}:, du;) where
u is a multilinear operator from the product of the Banach spaces
Y, Z; G=1,---,m, i=1, - - -, k;) into a Banach space W, and
fii are Lebesgue-Bochner summable functions, and u; are vector vol-
umes.

The above integral is a generalization of the integral [u(f, du)
developed in [1]. An integral similar to the last integral, developed
in a different way, one can find in Bourbaki [10, Chapter V, p. 48—
49]. For applications, see the following paper in this volume.

1. Properties of vector volumes. Let R be the space of reals and
Y;, Z:;, W be seminormed spaces. Denote by L(Yy, - - -, Vi; W) the
space of all k-linear continuous operators # from the space V; X - - -
X Y, into the space W. The norms of elements in the above spaces
will be denoted by | |.

The family of sets V of an abstract space X will be called a prering
if for any two sets 4;, A:&V we have 4:MN\A4,E V and there exists
disjoint sets By, - - - , Bx& V such that 4,\4,=B, - - - UB,.

A nonnegative function v on a prering V is called a positive volume
or when there is no confusion just volume if it is countably additive,
that is for every countable family of disjoint sets 4,&V (¢&7T) such
that A =Ur 4,EV we have v(4) = D7 v(4,).

A function u from a prering V into a Banach space Z is called a
vector volume or simply volume when there is no confusion possible
if the function u is finite additive on V and for some positive volume v
we have

| u(4)| = 9(4) forall 4 € V.

It follows from this definition and from the definition of a prering
that every volume is countably additive.

THEOREM 1. Let V; be a prering of sets of a space X; (i=1, - - -, k).
Denote by V=V1X - - - XV, the family of all sets of the form A
=A1X - -+ XA where A;EV,;. Then V is a prering of sets of the
space X =X1 X - - - XX;.

1 This work was partially supported by NSF grant GP-2565.
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A triple (X, V, v), where V is a prering of sets of the space X and v
is a positive volume on the prering V will be called a volume space.

THEOREM 2. Let (X, Vi, v)) (6=1, - - -, k) be volume spaces. Then
the triple (X, V, v), where X=X1X -+ XXz, V=V"1X - -+ XV,
and v(A)=11(41) - - - 0(4r) for A=A X - - - XA,EV, is a volume
space. The triple (X, V, v) will be called the product of the volume spaces
(Xo Vi, ).

THEOREM 3. Let V; be a prering of sets of a space X; (i=1, - - - , k).
Let v be a positive volume on V=V1X - - - XV and let g(4,, A4,, -

Ay) be a function from the prering V into a Banach space Z finite addi-
tive with respect to every variable A; separately. Then if

|24y, -+ 4| So(A1X -+ - X 4) forall A1 X -+ - X A E T,
the function p defined by the formula u(A1X -+ - XAx)=a(4y, « - -, 4x)

s a vector volume on the prering V.

Let (X, V, v) be a fixed volume space. Denote by M(v, Z) the set
of all volumes u from the prering V into the Banach space Z such that

| u(4)| < ev(4) forall 4 EV.

The smallest constant satisfying the last inequality will be denoted
by ||u/|. It is easy to see that the space (M(v, Z), || ||) is a Banach
space.

THEOREM 4. Let (X, V, v) be the product volume space of the volume
spaces (X;, Vs, 'v,) (=1, -, k). If u,EM(vs, Z;) for i=1, - - - , k
and u&L(Zy, - - Zk, W) then pE M@, W) and ||yl S[ul”;u”
[lil| where M(Alx - XA =u(u(dy), - - -, m(4r)) for all AeV

The proof of the theorem follows immediately from the previous
one,

2. Multilinear integrals and some relations between them.

LemwMmA 1. Let (Y5, [ ] i) be a family of seminormed spaces and let E;
be a dense subspace of the space V; (i=1, - - -, k). If u is a k-linear
operator from Ey X - - + X Ey tnto a Banach space W and

ulys, - 9| = Joflyli- - %l

for v,€E; (=1, - - -, k) then the operator u has a unique extension to
a k-linear operator u' such that [u'(yn SR ,yk)l = |ul ly1lx cee lyk|k
for y;EY.- (’i=1, ey, k)

Denote by S(Y) the family of all functions of the form
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h=vixa,+ * - +Yixa;,, where A;EV is a finite family of disjoint
sets and y;E Y.

In [1] was developed the theory of the space L(z, ¥) of Lebesgue-
Bochner summable functions f generated by a volume space (X, V, v)
with values in a Banach space Y. The set S(Y) according to Lemma 1
and Lemma 4, [1] is linear and dense in the space L(v, ¥).

Let

(Xii)Vii)vii) (]=1,,m,z=1,,k,)

be a family of volume spaces and let (X;, Vj, v;) be the product of the
above volume spaces corresponding to a fixed j.

Let # be a multilinear continuous operator from the product of the
Banach spaces Y, Z; (j=1,---,m;<=1, - - -, k;) into a Banach
space W.

Let u,EM(v;, Z;) and s;;ES5(Y;;). Take a representation

Sji = Z yn,-.'XA..,.,;
ﬂj"

where
ynj.' E Yj,' and Aﬂj" E Vj,'

are disjoint sets. Define

f u(sji, duj) = E Z Z u(ynm p’j(A"jl XX A"jk,.))‘

i njg
It is easy to see that the above operator is well defined, from the prod-

uct of the spaces U, S(Yj;), M(v;, Z;) (=1, - - -,m;1=1, - - - k)
into the space W and

J s dp| = 1l ( XX sl ) T o

for all ue U, S,','ES( Yj,-), M,‘EM(‘UJ', ZJ)

Using Lemma 1 we can extend the above operator to an operator
Ju(f:, du;) defined on the product of the spaces U, L(v;, v;:), M(v;, Z;).
Thus we have the following

THEOREM 5. The operator [u(fji, du;) is multilinear from the product
of the spaces U, L(vj;, Y;i), M(v;, Z;) (G=1, -, m;i=1,-- -, k)

into the space W and
J i aup| = 1l (Xl ) (Tl
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for all u€ U, fis&€L(vji, Yji), i€ M(v;, Zj).

THEOREM 6. Let (X, V, v) be the product of volume spaces (X;, Vi, v;)
G=1, .- ,k)andlet f;&L(vj, Y;). Let u be a k-linear continuous oper-
ator from the space Y1 X - -+ + X Yy into W. Then the function f defined
by the formula

@y, -y @) = u(fu(®a), - - -, felm))

on the space X belongs to the space L(v, W) and

Il = TalllAll - - - sl

Let (X, V, v) be the product of the volume spaces (X;, V;, ;)
where j=1, - - -, k.

Let Y;, Z be Banach spaces. Consider a multilinear operator u

from the space V31X - - - X Y;XZ into a Banach space W. Define a
new operator %, from the space Vi X - -: XY, into the space
Wo=L(Z; W) by means of the formula

uo(ys, -, (@) =u(yy, -, 02 foryE€YV,zE Z.

It is easy to see that the operator #, is k-linear and continuous.
Now if

i€ L, ¥y
then according to the previous theorem we have
f=wlfy, - -+, fr) € L(v, Wo).
Define a new operator #; by means of the formula
ui(w, 2) = w(z) forw & W,, 2 &€ Z.

THEOREM 7. If uE M (v, Z) and f=uo(f1, + + + , fr), %o, 4 are defined
as above then

[t ot = [nts, ).

Now let Y; Z; (j=1, - - -, k) be Banach spaces and let (X, V, v)
be the product of the volume spaces (X;, V; v;) (=1, - - -, k). Let

i€ L(v;, Y;) and u; € M(v;, Z;).

Consider a multilinear continuous operator % from the product of the
spaces Y;, Z; (j=1, - - -, k) into a Banach space W. Let u, be an
operator from the product of the spaces Z; (j=1, - - -, k) into the
space Wy=L(Y3, - - -, Yi; W) defined by the formula
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uo(zl) ] Zk)(yl, ] yk) = u'(yl’ s Yy Byt zk)

for z,&Z;, y:€ Y.
It is easy to see that the operator #, is k-linear and continuous.
Thus from Theorem 4 we get

M= uo(l-tl, ) Mk) e M(’U, Wo).

Let u: denote the multilinear continuous operator defined on the
space Y1 X -+ - X VX W, by means of the formula

ul(yl: v yyk,'w) = W(yl, o "yk) foryie Yi)'we Wo.

We have the following theorem.

THEOREM 8. If f;&L(v;, Y;) and p=uo(us, - - -, ux), %1 are defined
as above, then

fu(fx, ce S duyy e e, du) = f“l(fh <y fay du).

The last two theorems allow us to reduce any of the integrals to
the following form fu(f, du). In [5] has been shown how one can re-
duce the integrals to iterated integrals by means of generalized Fu-
bini's Theorems.
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