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Let {XN} for N= 1, 2, • • • be an independent sequence of random 
variables, and let SN = XI + • • • +XN. Probabilists have expended 
considerable effort investigating the convergence of {(SN — bN)/aN} 
where {bN} and { CLN } are sequences of centering and weighting con
stants respectively. Recently Baum and Katz in [ l ] , [2], and [3] 
have investigated the rate of convergence to zero of appropriately 
normalized sums, obtaining (along with some other results) results 
on the convergence of series of the form ^NyP{ \SN — NII\ >N&} 
where the X's are assumed to be identically distributed with common 
mean /x. Pruitt in [4] obtained a sufficient condition for sums of the 
form SN= X)fc aN,kXk to converge to JU. 

Now let {Xk} be an independent sequence of random variables 
having finite first moments and define 

F(y) = supP{\Xk- EXk\ >y). 
t 

Let {a#,fc} for N, fe = l, 2, • • • be real numbers such that 

(1) max | a,N,k I = CN~Py 

(2) E I aN,k I g CN«, 
k 

(3) E \<to,k\'£ CN->. 
k 

Define 

SN = Z ^ a>N,k(Xk — EXic). 
k 

We have obtained the following five theorems. 

THEOREM 1. If p > 0 , /3>0, a<]8, / > 1 , and ylF{y)^M<^ for all 
3>>0, then f or every e > 0 

P{\SN\ > e} £0(N->). 
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THEOREM 2. If p > 0 , j8>0, ce<j3, * > 1 , and ytF(y)->0 as ?-»«>, 
then for every e > 0 

P{\SN\ > e} = Ö(JV-') . 

THEOREM 3. If j 8 ( / - l ) - a > 0 , 0>O, a<]8, / > 1 , and F satisfies 

lim F(y) = 0 and I yl\ dF{y) \ 
y—> oo «/ 

< « , 

Jfeew /or e^ry e > 0 

S AW-D-«-ip{ I SN\ > e} < oo. 
N 

THEOREM 4. If p > 0, /3> 0, a <j8, / ^ 1, awd tóere exis/s a nonnegative 
and nonincreasing real-valued function G(x) *z F(x) satisfying 

ƒ* 00 

y*1 dG(y) | < oo 
m 0 

such that 

y*F(y) 
(4) sup sup = 7 < oo, 

then for every e > 0 

(5) Z^P"^{|^I >*} < ». 

THEOREM 5. /ƒ p > 0 , ]8>0, a< /3 , / ^ l , awd F satisfies 

lim F(y) = 0 <wd I V log+ 3; | rf/^GO | < °°, 
p—toe J g 

tóew (5) holds for every e > 0 . 

One should immediately notice that f or t*£ 1 we have 

] C I 0tf.* I* ^ ( max I aN,k I ) XI 
k \ k / k 

aN,k 

so that p can be assumed to be at least as large as j3(£ — 1) —a. Note 
that Theorem 1 implies ^N NP~1~8P{ \ SN\ >e} < 00 for every 8 > 0 
so that the additional assumptions used in Theorems 4 and 5 do not 
give very much more than that already obtained in Theorem 1. The 
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assumption (4) can readily be violated but most "reasonable" dis
tributions will satisfy it. 

Though Theorems 4 and 5 are considerably stronger than Theorem 
3, two known results can be obtained as corollaries of Theorem 3 by 
specializing the constant t and the constants a and fi from (1) and (2). 
Theorem 2 of [4] is obtained by setting £ = 1 + 1/Y, a = 0, and J8 = Y; 
a part of Theorem 3 of [2] and [3] is obtained by leaving t as is and 
setting a = 1 — r/t and /3 = r/t with \ < r/t = 1. 

The motivation for this work was as follows. The average JXi 
+ JX2+ÎX3 is at least as "fine" an average as is | X i + | X 2 and in 
some sense the first average is "finer" than the second. It has always 
seemed reasonable to the authors that a finer average than the 
standard average (l/N){Xi+ • • • +X^} should not hurt con
vergence any and might actually improve the rate of convergence if 
one could use the right quantitative measure of the improvement in 
averaging. The exponent p used in (3) seems to be the correct measure 
of averaging to use. 

The methods used in the proof of these theorems apparently orig
inated with Erdös [5]. The method was modified and improved by 
Katz [ l ] and modified still more by Pruitt [4]. Detailed proofs will 
appear elsewhere. 
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