MEASURES OF AXIAL SYMMETRY FOR OVALS¹

BY BROTHER B. ABEL DEVALCOURT

Communicated by V. Klee, October 20, 1965

B. Grünbaum [2] has made a thorough report of the known results on measures of central symmetry for convex sets. We seek here to measure the degree of axial symmetry (axiality) of an oval K (a compact convex set in E^2 with interior points).

DEFINITION. A measure of axiality is a real-valued function f defined on the class of ovals such that

(i) $0 \leq f(K) \leq 1$;

(ii) f(K) = 1 if and only if K has an axis of symmetry (is axial);

(iii) f is similarity-invariant.

Let ϕ be a direction in the plane, $k(\phi)$ a line normal to the direction ϕ , $b_{\phi}(K)$ the breadth of K in the direction ϕ , Cv(S) the convex hull of the set S, $\lambda_{\phi}(K)$ the "load curve" of K in the direction ϕ , (i.e., the set of midpoints of all chords of K in the direction ϕ), [K] the area of K, |K| the perimeter of K, and $K_{k(\phi)}$ the Steiner symmetrand of K with respect to the line $k(\phi)$.

The following measures of axiality are studied, and lower bounds are determined for them on the classes of arbitrary ovals (K), centrally symmetric ovals (K_e) , and ovals of constant breadth (K_1) :

$$f_1(K) = \max_{\phi} \left\{ 1 - b_{\phi} [\operatorname{Cv}(\lambda_{\phi}(K)]/b_{\phi}(K)] \right\},$$

$$f_2(K) = \max_{\phi} \max_k (1/b) \int_0^b r(\phi, k, y) \, dy,$$

where $b = b_{\phi+\pi/2}(K)$, $k = k(\phi)$, and $r(\phi, k, y)$ is the ratio (taken ≤ 1) of the lengths of the two parts into which a chord $\gamma = \gamma(y)$ of K in the direction ϕ is divided by k (r=0 if $\gamma \cap k = \emptyset$),

$$f_{3}(K) = \max_{K'} \{ [K'] / [K] : K' \text{ is axial, and } K' \subseteq K \},$$

$$f_{4}(K) = \max_{K''} \{ [K] / [K''] : K'' \text{ is axial, and } K \subseteq K'' \},$$

$$f_{5}(K) = \max_{K'} \{ |K'| / |K| : K' \text{ is axial, and } K' \subseteq K \},$$

$$f_{6}(K) = \max_{K''} \{ |K| / |K''| : K'' \text{ is axial, and } K \subseteq K'' \},$$

¹ This work was supported by the Air Force Office of Scientific Research Grant AF-AFOSR 661-64 and forms part of the author's dissertation written at the University of Minnesota under Professor H. W. Guggenheimer.

BROTHER B. A. DEVALCOURT

$$f_{7}(K) = \max_{\phi} \max_{k} \left\{ [K_{k(\phi)} \cap K] / [K] \right\},$$

$$f_{8}(K) = \max_{\phi} \max_{k} \left\{ [K] / [\operatorname{Cv}(K_{k(\phi)} \cup K)] \right\},$$

$$f_{9}(K) = \max_{\phi} \max_{k} \left\{ |K_{k(\phi)} \cap K| / |K| \right\},$$

$$f_{10}(K) = \max_{\phi} \max_{k} \left\{ |K| / |\operatorname{Cv}(K_{k(\phi)} \cup K)| \right\},$$

$$f_{11}(K) = \max_{\phi} \max_{k} \left\{ |K_{k(\phi)}| / |K| \right\}.$$

Lower bounds for these measures have been established as follows:

		K	K_{c}	K_1
f_1	≧	1/22	$\sqrt{2/2^{3}}$	$(2\sqrt{3}-3)^{1/2}$
f_2	≧	1/4	$2 \log 2 - 1$	0.5474
f_3	≧	5/84	$2(\sqrt{2}-1)^{5,2}$	$8(2-\sqrt{3})/3$
f_4	≧	1/2	$\sqrt{2/2}$	$3(\pi - \sqrt{3})/4(3 - \sqrt{3})$
f_{5}	≧	0.649	0.8045	$2\sqrt{2/\pi}$
f_6	≧	0.768	0.8045	$3\pi/8(3-\sqrt{3}).$

Lower bounds for the remaining measures are obtained from the facts that $f_i(K) \ge f_{i-4}(K)$, i = 7, 8, 9, 10, and $f_{11}(K) \ge f_9(K)$ for every oval K. The only other special result not included in the above table is $f_{11}(K_1) \ge (2 - 2\sqrt{3/\pi})^{1/2}$.

Proofs of these results will be published elsewhere.

References

1. G. D. Chakerian and S. K. Stein, On the symmetry of convex bodies, Bull. Amer. Math. Soc. 70 (1964), 594-595.

2. B. Grünbaum, *Measures of symmetry for convex sets*, Proc. Sympos. Pure Math., Convexity, Vol. 7, Amer. Math. Soc., Providence, R. I., 1963.

3. F. Krakowski, Bemerkung zu einer Arbeit von W. Nohl, Elem. Math. 18 (1963), 60-61.

4. W. Nohl, Die innere axiale Symmetrie zentrischer Eibereiche der euklidischen Ebene, Elem. Math. 17 (1962), 59–63.

College of Santa Fe

² Best possible lower bound.

³ Conjecture; this is the g.l.b. on the class of parallelograms.

⁴ Priority for this result must be given to F. Krakowski [3].

⁵ Result of W. Nohl [4].