A CONSTRUCTION FOR MAXIMAL ($+1,-1$)MATRIX OF ORDER 54^{1}

BY C. H. YANG

Communicated by J. D. Swift, November 12, 1965
Let m_{n} be an $n \times n$ matrix with entries +1 or -1 and α_{n} be the maximal absolute value of $\operatorname{det}\left(m_{n}\right)$. When $n \equiv 2(\bmod 4)$, it is known that

$$
\alpha_{n}^{2} \leqq 4(n-2)^{n-2}(n-1)^{2}=\mu_{n} \quad \text { (see Ehlich [1]) }
$$

and

$$
\left.\alpha_{n}=\mu_{n}^{1 / 2}, \text { for } n \leqq 50, \text { except } n=22 \text { and } 34 \quad \text { (see }[1],[2]\right)
$$

It is found that the above equality also holds for $n=54$.
The maximal $(+1,-1)$-matrix M of order 54 can be constructed as follows:

$$
M=\left(\begin{array}{rr}
A_{1} & A_{2} \\
-A_{2}^{T} & A_{1}^{T}
\end{array}\right)
$$

where A_{1}, A_{2} are circulant matrices of order 27 and T indicates the transposed matrix. The first rows of A_{1} and A_{2} are found respectively as:
$A_{1}:-+-+-++-+++++++\quad+-+-\cdots+++--$ A_{2} : -++++ + + +-++-++-+++ - ++- -
where - means -1 and + stands for +1 . The absolute value of $\operatorname{det}(M)$ can be obtained easily from

$$
M M^{T}=\left(\begin{array}{ll}
P & 0 \\
0 & P
\end{array}\right) \quad \text { where } \quad P=\left(\begin{array}{lll}
54 & & 2 \\
& \ddots & \\
2 & & 54
\end{array}\right)
$$

References

1. H. Ehlich, Determinantenabschätzungen für binäre Matrizen, Math. Z. 83 (1964), 123-132.
2. C. H. Yang, Some designs for maximal $(+1,-1)$-determinant of order $n \equiv 2$ $(\bmod 4)$, Math. Comp. 20 (1966), 147-148.

State University of New York, College at Oneonta

[^0]
[^0]: ${ }^{1}$ This research was supported by Summer Research Fellowship of The Research Foundation of State University of New York.

