
NORM INEQUALITIES FOR SOME ORTHOGONAL SERIES 

BY RICHARD ASKEY1 

To Professor A. Zygmund 

1. Introduction. Over forty years ago M. Riesz [3l] proved a theo
rem that is still inspiring new work. We refer to his celebrated con
jugate function theorem. 

Let f(eid) be integrable on (0, 2x) and form its Fourier series 

oo 

(1) f(ei$) ~ X) cneinB. 
—oo 

The conjugate function f(eid) to f(eie) is the function which in some 
sense has the expansion 

oo 

(2) f(eid) ~ — i ^2 ( sgn n)cne
ind. 

— 00 

M. Riesz showed that if ƒ £ £ * , 1 < £ < oo, then ƒ £ ! > , so (2) is an 
ordinary Fourier series, and 

(3) 11/11, =S Ap\\f\U 
where 

r n 2TT n i / p 

l l / !U=[Jo |/(e")|'d»J • 
One reason for considering the conjugate function is thatf(eie) +if(eid) 
has an analytic extension to the interior of the unit circle. In addition 
to this, there were two other applications of this theorem that were 
made many years ago. The first actually dates back before this theo
rem to a result of Kolmogoroff. Kolmogoroff [23] showed that the 
partial sums of (1) could be obtained in terms of ƒ and ƒ. Using this 
M. Riesz proved the inequality 

(4) | |S , | | , ^ Ap\\f\U (» = 0, 1, • • • ) 

where Sn(f) = ]C-w c^ikd and Av is independent of ƒ and n. From (4) 
it was easily shown that lim^,» | |Sn— /| |p = 0 for all / G ^ p , 1 <p< °°. 
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A second application is due to Zygmund in the first edition of [38]. 
Hardy and Littlewood [17] proved that if 

00 

f(x) — ]C an cos nx 
n==l 

and an+i^an, an—>0, then ƒ £ Lp if and only if ^a%np~2 converges, 
Kp< oo. Since the conjugate function to ƒ(x) is the function with 
the expansion ]T)£Li an sin nx, Zygmund observed that the theorem 
also holds for sine series, that is, if g(x) = X/n'-i an sin nx, an as above, 
then gÇz.Lp if and only if ]>^â^p_2 converges. In this case it is easy to 
dispense with the conjugate function theorem since the theorem for 
sine series can be proven in the same way as the theorem for cosine 
series. However the idea that one can get results for a series expansion 
from corresponding results for a different series expansion is an im
portant idea as we will show later. 

We now show how these three ideas can be applied in other con
texts. We mention in detail only applications to orthogonal series. 
There are corresponding applications to Hankel transforms and to 
Dini series and we include references to these papers in the bibliog
raphy. 

As the reader will see, many of the results I describe will be joint 
work with S. Wainger. In addition to the many mathematical dis
cussions we have had for years, I discussed the organization of this 
paper with him and he made a number of valuable suggestions. 

2. Mean convergence. Consider first the problem of mean con
vergence. The first important results for orthogonal expansions are 
due to Pollard [27], [28], [29], [30]. While his results have been 
proven for more general orthogonal expansions we state them only 
for ultraspherical expansions. The ultraspherical polynomials P\(x) 
are defined by 

(1 - 2rx + r2)-x = Ü P\(x)rn X > 0. 

They are orthogonal on ( — 1, 1) with respect to (1— x2Y~1,2dx. We 
assume ƒ G i > x î i.e., Nx

p\f] = [ A | / < > ) | ^iX-x^-^Hx}1^ is finite. 
Form its ultraspherical expansion 

00 x 
f(x) ~ ^ 0<nPn{x) 

71=0 

where 
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22X-1[r(\)]2(w + x)r(n + i) r1 

dn = /
r/ \ TÏ X / \ /4 2 X- l /2 

/ ( X ) J P W ( X ) ( 1 —• x ) dx. 
- 1 

Ti-rO + 2x) 

Let SNf = Zm-o a J ^ O ) . Then Pollard [29] has shown that 

(5) Np[SNf] ^ ApNl[f] (N = 0, 1, • • • ) 

but only for (2X + 1)/(X+1) <p <(2X + 1)/X. As usual from (5) we get 
limN^Nx

p[SNf-f]=0. 
Pollard has also shown that if 

/•/ \ V ^ r r>X/ \ / « 2 X/2-1/4 

i.e., 

2MrW(» + x)r(n + i) p x _ y/2_1/4 
irY(n + 2X) J _i 

then 

II iV 

ƒ ] £ bnPn(x) (1 — X) — f{x) 
1 I n=0 

& -> 0 for 4/3 < ƒ> < 4 

when ƒ £ £ * , 4/3 <p <4 . 
The second result is not as interesting as the first, for among other 

reasons series of the form ^2anPn(x) arise when considering expan
sions on spheres of zonal functions in terms of spherical harmonics. 
However, the fact that the indices 4/3 and 4 are fixed turns out to be 
important. If we consider (1 — x2/X)x~1/2 and letX—> <*> we get exp(—x2). 
Also 

-n/2 X / X \ 1 
lim X P » ( — ) = -Hn(x) 
x-*«> V A 1 7 2 / ni 

where Hn(x) are the Her mi te polynomials defined by Hn{x) 
= ( - l ) n exp(x 2 ) ( JV^ w ) (exp( -x 2 ) ) . See [35, p. 196.] These poly
nomials are orthogonal on (— oo, oo) with respect to exp(—x2)dx. 
There are two interesting expansions which arise: 

(6) ƒ0) ~ J^ anHn(x) 

and 

(7) f(x) ~ X) bnBn(x) exp(—x2) 

where 
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1 f00 

an — I f(x)Hn{%) exp(—x2/2)dx, 
w1/22nnl J-oo 

1 f °° 
#w — I f(x)Hn(%) exp(—x2/2)dx. 

irl/22nn\J _oo 
I t is of interest to see when the partial sums of (6) or (7) converge 
to ƒ in the appropriate mean. Since 

2X + 1 . 2X + 1 
lim = lim = 2 
x—»oo X -f- 1 x-»oo X 

we suspect that ƒ"«> | ]OLo dnHn{x) — f(x) \ v exp( — x2)dx—^0 for all ƒ 
with /uoo | / (x) | p exp(-x 2 )^x finite only if p = 2. Pollard [29] has 
shown that this is correct. However the second result of Pollard held 
for 4/3 <p < 4 so one might suspect that 

ƒ' 
N 

J2bnHn(x) ex-p(—x2/2) — f{x) 
=o 

V 

dx-±Q 

for all ƒ with ƒ "„ | ƒ(*) | ̂ x finite, 4/3 < £ < 4 . This result is true and 
was proven by Askey and Wainger in [2]. There we also proved the 
corresponding result for Laguerre series. Our proof uses an idea of 
Pollard to reduce the partial sum to a form with § n W ~ $ n + 2 W 
instead of § t t ( x ) - § w + i ( x ) , which is what naturally appears. For cer
tain values of x, $èn(%) — &n+2(x) is smaller than § n ( x ) - § n + i ( x ) . 
&n(x) is the orthonormal Hermite function. We also use important 
asymptotic formulas of Erdélyi and Skovgaard [12]. We should re
mark that all of these results are best possible in that they fail for 
some ƒ £ ! > for p either endpoint of the appropriate open interval. 

Pollard has asked the question about how you guess the values of 
p for which there is mean convergence for the expansion in orthogonal 
polynomials which are orthogonal with respect to w{x)dx. This prob
lem seems to be related to another problem on orthogonal series, the 
problem of what Cèsaro means sum a series in L1. For ultrapsherical 
series, ]£^Lo #n-Pn(#)» the (C, X + e) means are effective in Z,1, i.e. 

X X ) AN-*OnPn(x) — f(x) 
- x U - % - 0 

(1 — x ) dx-

for a l l / e L 1 ( ( l - * , ) w ' , < t e ) . Here 

« (N + a\ 
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On a (i/p, a) plane plot the points ((X+1)/(2X+1), 0) and (1, X). 

/X + 1 \ 
A = ( , 0 ) 

\2X + 1 / 
B = (1, X). 

(h -è) 
If we connect them with a straight line we see that the point (J, — J) 
is collinear with them. Whether this is always true is unknown for 
there are few cases in which both the mean convergence and the 
mean summability problems have been solved. Getting away from 
orthogonal polynomials, but using this principle, it is natural to con
jecture that for spherical partial sums of multiple Fourier series and 
for expansions in spherical harmonics that mean convergence holds in 
Lp for 2n/(n + l) <p<2n/(n — l) where n is the dimension of the space 
we are in. For each of these problems the corresponding (C, a) sum
mability problem has been solved, [lO], [22], [32], 

A somewhat more tractable conjecture is obtained if we consider 
the problem of Cèsaro summability for Jacobi or Hermite series. 
Jacobi polynomials, P£*,/3)(x), are polynomials orthogonal on ( — 1, 1) 
with respect to (1— x)a(l-\-%y. For these polynomials the mean con
vergence problem has been solved, [27], [30], but the mean Cèsaro 
summability in L1 is still open, [ l ] . I t should be possible to find an 
analogue of the convolution structure that is known for the case 
a = (3 and then the mean Cèsaro summability would follow from 
known results on the Lebesgue constants [ l ] , [35]. And even without 
the convolution structure the theorem can probably be proven be
cause of the known uniform asymptotic formulas of Hilb type [34], 
[35]. 

For Hermite series, ^anHn(x), it was shown in [ l ] that no Cèsaro 
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mean is effective in L1, or even Lp, py^l. For a closely related orthog
onal set of functions, the Laguerre polynomials, D. Ernst [13] has 
shown that the (C, 1) means are effective in L1. More particularly, 
he shows that if JQ \f(x) | dx < <*> and 

f(x) ~ X) anx Ln(x) exp(—x/2) 

then the (C, 1) means converge in Ll norm. For technical reasons he 
assumes that a ^ 3 but this restriction is probably not necessary. If 
this theorem were known for a — ± | , then it would be known for 
Hermite series. Actually the best result is probably that the (C, | + e) 
means are effective while the (C, J) means are not. 

For another heuristic connection between Cèsaro summability and 
convergence see [24]. For related results on Bessel series and integrals 
see [16], [19], [36], [37]. 

3. Mapping theorems. We now take up another of the ideas men
tioned in the introduction, the problem of getting results for expan
sions in a family of orthogonal functions from known results on ex
pansions in other orthogonal functions. We start by recalling Parse-
vall's theorem. 

Let / (0)£L 2 (O, 7r) and define its Fourier coefficients by an = (2/w) 
fof(0) cos nddd. Then X ) | a 4 2 *s n n î t e a n d 

a\ A 2 2 r* . |2 

(8) +Y,an = - \M\dB. 
I w = l 7T •/ 0 

Let P£(cos 0) be the ultraspherical polynomials of degree n, order X, 
X>0, and define two functions/x and/x by 

(9) /(6) = X > n ^ ( c o s 0 ) ( s i n 0 ) X 

and 

(10) /x(0) = J2antlpl(cosd). 

Here 

and 

x r22X~x[r(x)]2(^ + x)r(» + i)"]1/2 

In 

ƒ 

irT(n + 2X) 

(/n)2[Pt(cos 0)f(sm 6)^de = 1. 

file:///M/dB
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Since ]C | a w| 2 is finite each of the series (9) and (10) converges in 
an appropriate L2 space and we have 

(11) flfWN» è Uni2 

and 

(12) P \M0) l2(sin BYH6 = E | ̂  |2. 

I t is clear from (8), (11), and (12) that 

(13) f T | / ( 0 ) | W ~ r \f\0)\H6 
J o «J o 

and 

| f(6) \2d0 ~ I | /x(0) |2(sin 0)2Xd0. 
o *̂  o 

We write a~b if a/6 ^ C and 6/a ^ C where C is a constant (which is 
independent of any free variables in a or 6). For instance in (13), X is 
fixed but ƒ is free. 

We would like to generalize (13) or (14) to values of p other than 
p = 2. For instance we would like to see for what p we have 

(15) fr|/(0)N0~ fT\f\e)\*dd 
«^ o J o 

and for what p we have 

| /(0) \>d0 ~ I | /x(Ö) |»(sin *)»<». 
0 «^ 0 

(16) is false for £^ (2X+1) / (X + 1) and £^ (2X+1) /X since we have 
mean convergence of Fourier series for \<p< oo but mean conver
gence of ultraspherical series only for (2X + 1)/(X + 1) <£<(2X + 1)/X. 
Actually (16) is false for all p^l as Wainger and I showed in [4]. 
We will give this example later in this section. 

On the other hand (IS) is true for 1 <p< <*> and it is also true in 
certain weighted norms as was shown in [5]. There are a couple of 
reasons why a result like (15) is to be expected. From the known 
asymptotic relations for P£(cos 0) we have 

x _x tnPn(cos 0)(sin 0)x = A cos[(w + X)0 - XTT/2] + 0(n sin 0)-1. 

Thus the series X^n&Pn (cos 0)(sin 0)x is actually ]£j[a„ cos[(w+X)0 
—\ir/4:]-\-0(an/(n sin 0))] and for 0 bounded away from 0 and TT 
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the series is essentially XX* cos[(n+\)0—\w/2]. By M. Riesz's 
theorem this series behaves like ^an cos nd, a t least as far as its 
integrability properties are concerned. This connection has been used 
for many decades to set up equiconvergence theorems between 
Fourier and ultraspherical series on compact subsets on (0, IT). How
ever, no one has succeeded in using only the asymptotic formulas to 
get connections on all of [0, T]. After formally stating our theorem 
we will give the second heuristic reason and it is this reason that has 
been turned into a proof. 

THEOREM 1. Let l<p<<*>, - i < a < £ - i . Let Jl\f(6)\p(sm 9)<*dd 
< oo. Define 

2 rr 

an = — I f (6) cos nOdd 
T Jo 

so that 

ƒ(#) ~ ^2 an cos n9. 
Define 

T^rJiB) = f\d) = X rnantlpl(co$ 6) (sin 0)\ 0 < r < 1. 
n=0 

Then 

(17) [ ƒ J 1(6) r(sin 6fdejllP S A ^ ' \f(8) Itsin 6) "<W ] 1 / P 

where A is independent of r and ƒ. Also there is jfx(0) such that ƒ, (0) 
—>/x(0) a.e. as r—>1. Finally 

I I/x(0) |p(sin ö)«d» = ^ I l/@) |p(sin0)«<0 

There is also a related theorem in which one expands first in 
4P x (cos0)(s in0) x and uses these coefficients to set up a new function 
defined by a cosine series and then the same inequalities hold. 

THEOREM 2. Let p, a, ƒ be as in Theorem 1. Define 

/

lT x x x 

/(0)*nPn(cos0)(sin0) dd, 
0 

50 that 
f (6) ~ 2 ^ P n ( c O S 0) (sin 0)X. 
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Set 

X °° n 

Srf(0) = ]C bnr cos nO. 
n=0 

[ ƒ ' 1^(0) r C s i n f l ) " ! » ] 1 ^ ^ f ƒ * |/(0) r C s i n f l ) ^ ] 1 n/p 

where A is independent of r and f. Also there is Sxf(d) such that S$f(0) 
-»Sy(0) a.c, US\$f{0)-&f(fl)\*(8m 6)*dO]u*->0, and 

\ f'\ W ) \p($m0)«d61 *£ A f ƒ |/(0) |*(sin0)«<»j 
I/P 

For X = 1/2 we sketch the idea of the proof. Recall Mehler's formula 

1/2 -11/2 fe cosjn+ %)<!> 
Pn (COS 0) = 7T 2 I d<£. 

J 0 (COS0- COS0)1'2 

Using this in X ^ w ( > + 1/2)1/2 P£1/2)(cos 6)(sin 0)1/2 we see that 

x i/2 - i Ce H anrn(n + J)1 '2 cos (n + | ) 0 

J o Lcos 0 "~ c o s 0J 

The series is related to the fractional derivative of order one half of 
^anr

n cos n<j> and the integral is related to the fractional integral of 
order one half. The proof consists of unscrambling these two opera
tions. 

Before we give applications of these theorems we need to state 
some results about Fourier series. We state them only for cosine 
series, but they in fact hold for general Fourier series. The first 
theorem is a generalization of the Marcinkiewicz multiplier theorem 
to weighted Lv spaces and is due to Hirschman [20]. 

T H E O R E M A . Let ,# | /(0) |*(sin 6)<xdd<ooi l<p<co, _ i < a < £ - i . 
Set 

2 r* 
an = — I f(B) cos nddd 

2 

o 

so 

/(0) ~ S an cos nd. 
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If {tn} satisfies 

(1) \tn\^C » = 0 1, . • • 
2 W + 1 - 1 

(2) E | f c f i - f c | ^ C » = 0 1, • • • 

then there is a function Tf such that 

Tf(°) ~ Z) U cos «Ö 

J | r/(o) Ksin eyde = AC\ \ l/W |p(sin0)«<» 

wfeere A is independent of f and {tn}. 

For tlt = 1 if w ^ iV and tn = 0 if w> N this theorem is essentially due 
to Hardy and Littlewood [18] and for a = 0 it is the theorem of M. 
Riesz that we mentioned in the introduction. 

A second theorem is due to Hardy and Littlewood [17] for mono-
tonic coefficients and is found in [7] in this degree of generality. 

THEOREM B. Let ƒ be integrable on (0, ir). Then if 

2 r* 
an = — I f(d) cos nSdd 

7T J o 

and (n + l)~kan+i^n~hanfor some k, we have / j | / (0) |*(sin 6)add<co 
if and only if ^av

nn
v~2-a <oo, l ^ £ < o o , —l<a<p — l. 

An analogue of the Marcinkiewicz theorem is the following. 

THEOREM 3. Let f5\f(0)\ p(sin 0)2M0<oo, (2X+l ) / (X+l )< /> 
< (2X + 1)/X, f{fi) ~ ]T anP*(cos 0). Assume that \sN\ S C and 
X^2^+1 | s n —sn+i| ^ C , JV = 0, 1, 2, • • • . Then there is Tf(B) such that 

Tf(0) ~ Z 0nSnP\(C0S 0) 

and 

ƒ» T / • IT 

| Tf(o) Ksin eyne g i | /(0) Ksin syne. 
0 ^ 0 

Using Theorems 1,2, and 4̂ we see that 
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f ' \ T f («)['(:• sin0)2V0 

nsn cos nd 

cos nd 

ƒ **•] x 

J^dnSnPn(COS 0) ( s i n 0) 
0 I 

ƒ• * I x _ x 

0 I 

ƒ» T I x - l 

o I 
X) On-Pn(cos0)(sin0)' 

o I 

= il f |/(0)|*(sin0)2M0. 

(sin ef-pXde 

(sin (9) <Z0 

( s i n ö ) 2 X ~ ^ 

(sindf-^dd 

We need - 1 < 2 X - £ X < £ - 1 or (2X + 1 ) / (X+1)<£<(2X + 1)/X. 
Similarly the following analogue of the Hardy-Littlewood theorem 

holds. 

THEOREM 4. Let f(d)~^>2anPl(cos 0) where rrkan j 0 for some k. 
Then fî\f(0) | P(sin 0)a(sin 0)2M0 <<*> if and only if ] £ | an\

P
 w2*-2-2x-« 

<«>, K ^ < o o , X ^ - ( l + 2 X ) < a < ^ ( X + l ) - ( l + 2 X ) . 

There is a related Ll result but only for series with monotone coeffi
cients. As a corollary of other results, Ganser [14] shows that 

f(0) ~ X^ an cos nd ƒ > ) X) antnPn(cos 0)(sin 6) 

satisfy /o |/(Ö) | (sin dY~Hd < oo if and only if / j | f (0 ) | (sin dY~Hd < *> 
but only for 0 < j 8 < l and more importantly if some condition like 
a w + 2 ^a n , an—>0 holds. I t would be interesting to have some counter
examples to this result without the assumption on an. 

To show that the mapping between ^ a n cos nd and ]>jan^P*(cos d) 
is not bounded we consider the functions given by /(0) = ^2n~a cos nd 
and g(0) = J2n~atlPl(cosd) and the functions given by Tf(fi) 
= J^i^n-a cos nd and Tg(0) = X ) ^ ~ a ^ n ( c o s 0) for 0 < a < l . We 
have that /(0) and g(0) are continuous except for 0 = 0 and there 
f(d)=Ad«-1+B(d), g{d)=A'd^~l+B,{d)y where A and A' are con
stants, B(d) is bounded and 5'(0) =O(0<*-X + 1). See [3, p. 215]. Tf(6) 
and Tg{&) are continuous except for 0 = 7r/2 and there 

77(0) — | Ö — TT/2 \^[AX + Bx sgn (0 - TT/2)], 

Tg(0) ~ 0 - TT/2 | - I [ 4 , + J52 sgn (0 - TT/2)] 
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where Au Bu A2, B% are constants and at least one each of Au B\ 
and A 2, B% is nonzero. See [4]. j(0) and Tf(6) are in Lp(dd) for the 
same values of ce. However g ££ p ( ( s in 0)2Xd0) for a > l + X — ( l+2X) /£ 
and TgG((sin 0)2Xd0) for a > l —l /£ but not for other values of a. 

Thus if p < 2 and 1 + X - (1 + 2\)/p < a < 1 - l / £ , we have 
gGZ>((sin 0)2M0) but not Tg. However ƒ and Tf belong to L*> a t the 
same time and so it is not possible to set up a mapping between 
^2an cos nd and ^ant^P^(cos 0) that is bounded in both directions. 
Actually this shows slightly more, that the only way we could set 
up a mapping between ^an cos nd and X)a»fen-P£(cos 0)(sin d)& and 
have it bounded in both directions is to have kn~tn and |3=X and 
have the measures the same. 

There is a dual mapping theorem in which the function ƒ is held 
fixed and the mapping goes between different coefficients. 

THEOREM 5. Let f(d)GLl(0, T) and l<p<*>, -Ka<p-1. Set 

j'(d) cos nddd 
o 

and 
x r* x x x 

<*n = I f(d)tnPn(cOS 0) (s in 0) J0 , X > 0 . 
•^ 0 

Then if either ^2\an\
p(n + l)a< oo or X)|a£| p(w + l ) a < °° so is the 

other and 

r °° " U / P r oo ~|i/i> 

Ekl'(» + in ~ zUlV+in • 
L n=0 J L w=0 J 

This theorem is in [ó]. There is a corresponding theorem for Jacobi 
coefficients [8] and in this paper there are some results on the map
ping in I1. The applications that follow from Theorem 5 are handled 
in exactly the same way as the applications that were given following 
Theorems 1 and 2. The analogue of the Marcinkiewicz theorem is due 
to Sunonchi [33] and Igari [21 ]. 

For a similar theorem for Hankel transforms see [16]. There are 
also two other papers that have work that is related to this type of 
theorem [9], [15]. Baxter's work is related to Theorem 5 and Gunz-
ler's work is related to Theorems 1 and 2. However, they are both 
different in that the mappings they set up are bounded in L1 (or ll) 
while our mappings are not. 

4. Conjugate series. Finally we mention briefly a few of the results 
of Muckenhoupt and Stein [25]. These results are closely related to 
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our Theorems 1 and 2. In fact we prove Theorem 1 first for 0 < X < 1 
and then use estimates found by Muckenhoupt and Stein to extend 
our result to X ^ l . 

We have considered expansions 

/ ( » ) ~ E a » ^ » ( c o s 0 ) , 

in both §§2 and 3. To this function /(0) we associate the "harmonic" 
function 

(18) f(r, 0) = X anr
npl(cos 0) 0 ^ r < 1. 

If we write u(x, y) =/( r , 0), x = r cos 0,y = r sin 0, then u(x, y) satisfies 

d2u d2u 2\ du 
Ax(«) = + + = 0 

dx2 dy2 y dy 
for x2+y2<l, y>0. To the series for f(0) we associate a "conjugate" 
series 

.__ dn X+1 

f(fi) ~ 2X 23 P»-i(cos 0) sin 0 
n-l « + 2X 

and its "conjugate harmonic" series 

(19) /(r, 0) = 2X £ ——— rnpZ\ (cos 0) sin 0. 
„_i w + 2X 

If we set 

v(x, y) = ;y2X/(r, 0) 

then w and v satisfy "Cauchy-Riemann equations" 

Vx = — 3^2X%, fy = ^2X^x 

and z> satisfies an equation "conjugate" to that of w, 

<92z> d2?; 2X dv 
A_xW = — + — = 0. 

dx2 dy2 y dy 

Since Pi(cos 0) = sin(w + l)0/sin 0 and lirnx^0 ((n + 2X)/2X)P£(cos 0) 
= cos nd the above reduce to the classical notion of conjugate func
tion when X—»0. 

In some sense f+if is a generalized analytic function. There are 
two types of theorems we now mention. The first is a generalization 
of M. Riesz's conjugate function theorem. Muckenhoupt and Stein 
show that 
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\ ƒ I f(P) lp(sin eyHe | ' g A \ f \ f (8) |*(sin 0)2X<Z0 | 

for 1<^? < oo and conversely that 

r /» x - i l / p r / » i 

I I ƒ(#) |p(sin 0)2X^0 ^ 4 | f(0) Ksin 0)2M0 ]i /p 

• 

As we remarked above the analysis that went into the proof of this 
theorem was used to complete the proof of Theorem 1. 

The other theorem is also an analogue of a classical theorem. If 
f(z)=u(x, y)+iv(x, y) is analytic then \f(z)\a = (u2+v2)al2 is sub-
harmonic for a>0. The analogue of this for ultraspherical expansions 
is the following. 

THEOREM 6. Letf(r, 8) and](r, 8) be defined by (18) and (19). Then 
A x [ f 2 + / 2 ] ^ 2 ^ 0 / ^ ^ ^ 2 X / ( 2 X + l ) . 

A corollary of this is the following theorem which is the analogue 
of the F. and M. Riesz theorem. 

THEOREM 7. Let /J(sin 0)2M/z< <*>, /J(sin 8)2Hv<«> and 

df* ~ 22 0„Pn(cos 8) 
and 

dv~2\2l Pn-i (cos 0) sin 0. 
n + 2X 

Tfeew d/x awd d*> are absolutely continuous. 

There are many other theorems in this interesting paper including 
the first proof of the Marcinkiewicz multiplier theorem which we 
gave in §3. The results in this paper are only for X > 0. For — J <X < 0 
the ultraspherical series still make sense and a start of the theory for 
this case has been made by S. Parter in [26]. 
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