DECOMPOSITION OF PRODUCTS OF MODULAR REPRESENTATIONS¹

BY THOMAS RALLEY

Communicated by I. Reiner, June 24, 1966

Let G be a cyclic group of order p^N with generator g, p a prime, and let KG be the group algebra over a field K of characteristic p. Green [1] and Srinivasan [3] gave formulas for the decomposition of tensor products of KG-modules into direct sums of indecomposables. We outline here an alternative procedure, based on the theory of elementary divisors, for obtaining these formulas.

For each r, $1 \le r \le p^N$, there is an indecomposable KG-module of dimension r. It affords a matrix representation $g \rightarrow V_r = E_r + H_r$, where E_r is the $r \times r$ identity matrix and H_r is the $r \times r$ matrix with ones along the superdiagonal and zeros elsewhere. The characteristic matrix $V_r - \lambda E_r$ has exactly one elementary divisor, $(1-\lambda)^r$. Thus the decomposition of a KG-module can be determined from knowledge of the elementary divisors of the matrix representation which it affords.

LEMMA ([2]). The elementary divisors of $V_m \otimes V_n - \lambda E_{mn}$ are the same as those of $M = [H_m + (1-\lambda)E_m]^n$.

Put $t=1-\lambda$. Expansion by the binomial theorem shows that M is an upper triangular matrix with (i, j) entry $a_{ij} = C(n, j-i)t^{n-j+i}$, $1 \leq i, j \leq m$, where the binomial coefficient C(n, j-i) is to be regarded as an element of K.

To describe the elementary divisors, or what is the same, the invariant factors of M, we introduce the following notation. For $1 \le r$ $\le m$, let c(r) denote the largest integer l such that the submatrix of M consisting of the entries from rows 1 through r and columns l through m, has rank r. For example, c(1) is the column index of the last nonzero entry of the first row of M.

We now indicate a procedure for finding the invariant factors of M. Subtract appropriate multiples of column c(1) from columns preceding it so that all entries of the first row except $a_{1,c(1)}$ become 0. Subtract suitable multiples of the resulting first row from the rows below it so that all entries $(i, c(1)), 2 \leq i \leq m$, become 0. If c(1) < m, repeat the process with columns c(1)+1 through m. These elementary operations transform M into a matrix

¹ This research was supported in part by NSF Grant No. GP 4013.

$$\begin{bmatrix} 0 & D_1 \\ M_1 & 0 \end{bmatrix}$$

where D_1 is diagonal with each entry $a_{1,c(1)}$. It follows that the first m-c(1)+1 invariant factors of M are $t^{n-c(1)+1}$. It can be shown that each entry of M_1 is the determinant of an appropriate submatrix of M, which implies that either the upper right-hand entry of M_1 is nonzero or else M_1 has a triangular block of zeros in its upper right-hand corner. The procedure may then be repeated with M_1 , leading to the following result.

THEOREM. Let the sequence $c(1), c(2), \dots, c(m)$ be of the form

$$c(1) = c(2) = \cdots = c(r_1 - 1) > c(r_1)$$
$$= c(r_1 + 1) = \cdots > c(r_s) = 1$$

and set $r_0 = 1$. Let

$$e(i) = n - c(r_i) + r_i, \quad 0 \leq i \leq s.$$

Let $f_0 = m - c(r_0) + 1$ and for $1 \leq i \leq s$,

$$f_i = c(r_{i-1}) - c(r_i).$$

Then the invariant factors of M are $t^{e(i)}$ with multiplicity $f_i, 0 \leq i \leq s$.

From this result one easily obtains the formulas of Green [1] used to show the semisimplicity of the representation algebra of KG.

References

1. J. A. Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607-619.

2. W. E. Roth, On direct product matrices, Bull. Amer. Math. Soc. 40 (1934), 461-468.

3. B. Srinivasan, The modular representation ring of a cyclic p-group, Proc. London Math. Soc. (3) 14 (1964), 677–688.

UNIVERSITY OF ILLINOIS