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THEOREM 1. Let U be unitary and of simple spectral multiplicity and 
let V be a bounded symmetric operator such that UV—VU^ei-, U*e) 
where e is cyclic for U. Then V is unitarily equivalent to the operator L 
defined by 

*W) 

Mk*(t) 
LX(T) = D(T)X(T) + —% T x(t)dt 

where D(r) is an essentially bounded real-valued function defined on 
v(U), the spectrum of U> and k(r) is an essentially bounded measurable 
complex-valued function. 

We confine ourselves without essential restriction to the case that 
k(t)5*0 almost everywhere on a(U). 

Let 

1 r p ^ + z dv 
A(l, z) = e x p - I g(?,£*) de 

2w J _* J _oo e* — z v — I 
where 

1 D(e*) - v - i o - \ *<«•) |« 
g(p, e™) = — arg 1 p • 
6X9 It * />(«*) - F - W + | *(**)|» 

LEMMA 1. 

[A{U)\~i = A*(l, I ) 

LEMMA 2. Let 

e* + z ƒ * e* 

g(y, «*) — 
el° 

dO 

for \z\ < 1. Then there exists a one-parameter family of positive singular 
measures, dap(-), of finite total mass f or almost all v, and a real-valued 
function fi(v) such that 

1 This work performed under the auspices of the U. S. Atomic Energy Commission. 
2 The complex conjugate of a function T is denoted by T*. 
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ƒ * ei9 + z 
— daw(p). 

_r e* — z 

Let {PyU)(B)}^Pl denote a complete orthonormal set in L^(cr(U), 
dcr„(-)) where m(*>)= dimension of L2(a(U), dav(-)). Set 

Fj(v,z)~(A(v + io,z) ^-M. 
J ~„ 1 — se*""* 

THEOREM 2 (Evaluation of the spectral multiplicity of L). Let M(v) 
= {ei9:g(p, ei$) = 1}. If M(v) is the union of n disjoint arcs, then m(v) 
= n; otherwise, m(v) is infinite. 

THEOREM 3. Let 

1 / ik(e**) 
P>(x, y) = — Hm ( y (L - v - irj)-1 

1 — ye*v 

/or |* | < 1 , \y\ < 1 , se/fcere (ƒ, « ) = ƒ ! , ƒ(«*)«*(**)<». 
Then, 

*%(*, y) = E */0s *)Fy(*, y), 
y-i 

a»d 

I P,(*, y)«fe = (1 ' , ,J • 
J ,<L> M — afc~* 1 - y^-*V 

The proof of this theorem follows from a residue calculation and the 
algebraic relations 

/A(% + io, x) A($~ io, x)\ 

\A($ + io, y) A(% — io, y)/ 

1 1 / 1 \ w({) * 

Z 1 — #C0 \ CO/ i 

using Lemmas 1 and 2. 
This last theorem can be written in the form of an eigenfunction 

expansion. Thus, set 

**& 0) = 77=Tlim to& (1 + «>«*> ~ p&> <* ~ *>«*>! 
k(e ) ni 0 
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and 

SM)^ frf(e)x*&o)de, 

whenever f (6) belongs to the domain of the absolutely continuous 
part of L, the integral existing in the mean square sense, with 

THEOREM 4. Let 

{ft(Ö, • • • , *•«>(*)} -«(*) 

be a vector in the direct integral Hilbert space 3C* formed with respect to 
Lebesgue measure and the multiplicity f unction m(£). Let 

Z &W*y(F, 6)dv. 
• (F) 1 

Then ST= 1 and TS= 1, and 

f "i: i &M h** - f !/(«•) h». 

Furthermore SLf(&) =££ƒ(£). 

The last two theorems imply that L, and hence V, has an abso
lutely continuous spectral measure if the spectrum of U is not the 
entire circle. If the spectrum of U should be the whole unit circle, 
then the absolutely continuous part of V is diagonalized exactly ac
cording to the results presented above. However, in this case when 
D(eid)±\k(ei9)\2 = ̂ ± are constant, infinitely degenerate eigenmani-
folds corresponding to the eigenvalues £* can appear. Let us see why 
this is so. If yiZ, r) is an eigenvector of L, so that Ly(%, r) =£;y(£, r) 
we have 

1 I f k(r)k*(t) 
[D(r) - *]?&ƒ) + - J -±LJ±yfo t)dl. 

From this, we may conclude that 

[D(r) - £ + | *(r) |2]«(£, r+) = [D(T) - £ - | k(r) |2]<K£, r") 

where 
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1 C k*(t) 
* & « ) = T - : | ; — y & ö * . 

Thus, if # ( T ) ~ £ - | & ( T ) | 2 = 0 , for example, then <K£, r+ )=0 . But, 
by the Plemelj formula this means that 

1 I **(*)yft, 0 
*(*, r+) = i**(r)y(fc r) + — J «ft 

= 4(7 + ff*)*** 

where 

1 f x(t) 

W W <r(Z7) / — T 

A relatively simple argument now shows that Hu has purely abso
lutely continuous spectrum if <r(U) is not the whole circle—and thus 
k*y = 0 or y = 0 in this case ; but Hu has an infinitely degenerate eigen-
manifold associated with the eigenvalues —1 and 1 if <r(U) is the 
whole circle. 

An application to the theory of self-adjoint Toeplitz matrices. Let 
k(e**) be positive and integrable on (—w,w). Then if P is the orthog
onal projector from L^—ir, T) to the Hardy space 3C2, we can repre
sent the Toeplitz operator in the form TJ=P&/, /£3C 2 [ l ] . 

If f£3C2, then kfSLz and, in the sense of mean convergence 

*(«*)ƒ(«*) = È On*** 
n-=— oo 

where 

Ê l*»l2< « 
n—«—» 

but 

- i r km) JM , , ^ t 
E ö n 2 n = T - : ! * i l * ^ 1 -
n-0 lm* If 1-1 J — 2 

Thus 
00 

lim E <*«'**** = PkWf(e»). 
r Î 1 n-0 

But the Plemelj formula can be used to evaluate this limit, and we 
obtain 
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1 1 if 4(T)/(T) 

J 2 2 « J r-exp(«) 
|TI«1 

Let 7" as written on the right-hand side above be considered as a 
self-adjoint operator on L2(k) ==Z2(—7r, W; è(e^)dö). Let us denote the 
closure in this space of finite linear combinations of the form 

Then, if *e(3C*) \ 

(Tx, y)Lt(k) = (*, Ty)Ltik) = 0, V? G £,(*). 

Thus (5CDX is the null manifold of T. 
The reader will see that the spectral analysis of T restricted to 3CJÊ 

is carried out immediately by an easy application of the results of the 
preceding section. For a different approach see [2], [3]. 

FINAL REMARK. The proof of our main result is carried out by 
means of a reduction to a new general theory of singular Riemann-
Hilbert boundary value problems: 

*+(€, X) = Gft, A)*-& X) 

where 

7^' 
-00 v — £ — to 

and dM\(-) is a one-parameter purely singular positive measure [4]. 
This reduction also makes it possible to give a much more transparent 
deduction of the author's previous results about singular integral 
equations on the line [S]. Furthermore, it leads to a spectral theory 
for self adjoint coupled systems of singular integral equations [6]. 
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