FIXED POINT FREE INVOLUTIONS ON HOMOTOPY SPHERES

BY W. BROWDER AND G. R. LIVESAY ${ }^{1}$
Communicated by J. Milnor, November 9, 1966

1. Introduction and statements of theorems. Let $T: \Sigma^{n+1} \rightarrow \Sigma^{n+1}$ be a smooth ${ }^{2}\left(C^{\infty}\right)$ fixed point free involution on a smooth manifold, Σ^{n+1}, homeomorphic to the $(n+1)$-sphere, S^{n+1}. We wish to consider the following problem: does there exist an n-sphere, S^{n}, smoothly imbedded in Σ^{n+1} such that $T S^{n}=S^{n}$? If such an S^{n} exists, we will say that $\left(T, \Sigma^{n+1}\right)$ desuspends to $\left(T \mid S^{n}, S^{n}\right)$ and that $\left(T \mid S^{n}, S^{n}\right)$ suspends to (T, Σ^{n+1}). We claim (proofs are to appear later):

Theorem 1. If $n \geqq 5$ is odd, then (T, Σ^{n+1}) desuspends to ($T \mid S^{n}, S^{n}$) for some T-invariant $S^{n} \subset \Sigma^{n+1}$.

If n is even, there are obstructions to desuspending (T, Σ^{n+1}). There is a bilinear form, $B(x, y)$ defined on a certain subgroup of $H_{*}(M)$, where $\Sigma^{n+1}=A \cup T A, A$ and $T A$ are compact submanifolds of Σ^{n+1} with smooth boundary, and $\partial A=\partial T A=A \cap T A=M$. If $n \equiv 2(\bmod 4)$, then B is symmetric, and its signature, $\sigma\left(T, \Sigma^{n+1}\right)$ is determined by $\left(T, \Sigma^{n+1}\right)$. If $n \equiv 0(\bmod 4)$, then B is skew-symmetric. Furthermore, if $n=4 k$, there is a map $\psi_{0}: H_{2 k}\left(M ; Z_{2}\right) \rightarrow Z_{2}$ such that $\psi_{0}(x+y)=\psi_{0}(x)+\psi_{0}(y)+B_{2}(x, y)$, where B_{2}, defined on a subgroup of $H_{2 k}\left(M ; Z_{2}\right)$, corresponds to B, defined on a subgroup of $H_{2 k}(M)$. The Arf invariant, $c\left(T, \Sigma^{n+1}\right)$, [1], [4], corresponding to ψ_{0} and B_{2}, depends only on (T, Σ^{n+1}). Regarding these invariants, we have

Theorem 2. If $n \equiv 2(\bmod 4)$ and $n>5$, then $\left(T, \Sigma^{n+1}\right)$ can be desuspended to $\left(T \mid S^{n}, S^{n}\right)$ if and only if $\sigma\left(T, \Sigma^{n+1}\right)=0$.

Theorem 3. If $n \equiv 0(\bmod 4)$ and $n>4$, then $\left(T, \Sigma^{n+1}\right)$ can be desuspended to $\left(T \mid S^{n}, S^{n}\right)$ if and only if $c\left(T, \Sigma^{n+1}\right)=0$.

At present, we have no example of (T, Σ^{n+1}) for which either $c\left(T, \Sigma^{n+1}\right) \neq 0$ for $n \equiv 0(\bmod 4)$, or $\sigma\left(T, \Sigma^{n+1}\right) \neq 0$ for $n \equiv 2(\bmod 4)$. An interesting example to study in connection with the possibility of

[^0]a nonzero Arf invariant is the nonstandard involution of Hirsch and Milnor on S^{5}, [3]. However, even if the Arf invariant is zero, our methods do not give a desuspension of this involution to the 4 -sphere, because of the usual difficulties of finding a basis for $H_{2}\left(M^{4}\right)$ represented by imbedded spheres.

Regarding the uniqueness of the desuspension, we have
Theorem 4. If $n \geqq 4$ is even, and (T, Σ^{n+1}) desuspends to ($T \mid S_{0}^{n}, S_{0}^{n}$) and to $\left(T \mid S_{1}^{n}, S_{1}^{n}\right)$, then $\left(T \mid S_{0}^{n}, S_{0}^{n}\right)$ and $\left(T \mid S_{1}^{n}, S_{1}^{n}\right)$ are equivariantly concordant in $\Sigma^{n+1} \times I$.

We say that $\left(T_{0}, S_{0}^{n}\right)$ and $\left(T_{1}, S_{1}^{n}\right)$ are concordant if there exists a fixed point free involution $T: S^{n} \times I \rightarrow S^{n} \times I$, where $I=[0,1]$, such that $T\left(S^{n} \times 0\right)=S^{n} \times 0$, and equivariant diffeomorphisms $i_{0}:\left(T_{0}, S_{0}^{n}\right)$ $\rightarrow\left(T \mid S^{n} \times 0, S^{n} \times 0\right)$ and $i_{1}:\left(T_{1}, S_{1}^{n}\right) \rightarrow\left(T \mid S^{n} \times 1, S^{n} \times 1\right)$. If $\bar{T}: \Sigma^{n+1}$ $\rightarrow \Sigma^{n+1}$ is a smooth, fixed point free involution, then (T_{0}, S_{0}^{n}) and (T_{1}, S_{1}^{n}) are concordant in $\Sigma^{n+1} \times I$ if they are concordant, and $\left(T, S^{n} \times I\right)$ is equivariantly imbedded in ($\bar{T} \times 1, \Sigma^{n+1} \times I$) with $S^{n} \times 0 \subset \Sigma^{n+1} \times 0, S^{n} \times 1 \subset \Sigma^{n+1} \times 1$. If $n>4$ is odd, the signature and Arf invariant, which appeared as obstructions to desuspending (T, Σ^{k}), now appear as obstructions to obtaining a concordance in ($T \times 1, \Sigma^{n+1} \times I$) between two given desuspensions, ($T \mid S_{0}^{n}, S_{0}^{n}$) and $\left(T \mid S_{1}^{n}, S_{1}^{n}\right)$. If $S_{0}^{4 k-1}$ and $S_{1}^{4 k-1}$ are two invariant spheres in ($T, \Sigma^{4 k}$), then $\sigma\left(T, \Sigma^{4 k}, S_{0}^{4 k-1}, S_{1}^{4 k-1}\right)$, the signature of a certain bilinear form, is defined. We then have

Theorem 5. $S_{0}^{4 k-1}$ and $S_{1}^{4 k-1}$ are concordant in $\left(T \times 1, \Sigma^{4 k} \times I\right)$ if and only if $\sigma\left(T, \Sigma^{4 k}, S_{0}^{4 k-1}, S_{1}^{4 k-1}\right)=0$. In particular, if $\sigma=0$, then ($T \mid S_{0}^{4 k-1}, S_{0}^{4 k-1}$) and $\left(T \mid S_{1}^{4 k-1}, S_{1}^{4 k-1}\right)$ are equivariantly diffeomorphic.

Now suppose $S_{0}^{4 k+1}$ and $S_{1}^{4 k+1}$ are invariant spheres in ($T, \Sigma^{4 k+2}$). Then $c\left(T, \Sigma^{4 k+2}, S_{0}^{4 k+1}, S_{1}^{4 k+1}\right)$, an Arf invariant, is defined.

Theorem 6. $S_{0}^{4 k+1}$ and $S_{1}^{4 k+1}$ are concordant in $\left(T \times 1, \Sigma^{4 k+2} \times I\right)$ if and only if $c\left(T, \Sigma^{4 k+2}, S_{0}^{4 k+1}, S_{1}^{4 k+1}\right)=0$.

Corollary. If $n \equiv 1(\bmod 4)$, there are at most two invariant n spheres in Σ^{n+1}, up to equivariant diffeomorphism.

It is planned to present detailed proofs later. We will, however, indicate briefly some of the ideas involved.
2. Characteristic submanifolds. Let $T: \Sigma^{n+1} \rightarrow \Sigma^{n+1}$ be a fixed point free smooth involution. A characteristic submanifold $M^{n} \subset \Sigma^{n+1}$ is an n-manifold smoothly imbedded in Σ^{n+1} such that $\Sigma^{n+1}=A \cup T A$ with $A \cap T A=M^{n}$. We have a commutative square

where N is large, P^{N} is a real projective N-space, and f classifies the principal Z_{2}-bundle $\Sigma^{n+1} \xrightarrow{\pi} \Sigma^{n+1} / T$. By making f transverse-regular [5] on $P^{N-1}, \pi^{-1} f^{-1} P^{N-1}$ will be a characteristic submanifold. It is easy to see that all characteristic submanifolds arise in this way. Any two characteristic submanifolds are equivariantly cobordant in ($T \times 1, \Sigma^{n+1} \times I$). (The definition is analogous to that of concordance in $\Sigma^{n+1} \times I$.) It is this fact that makes the signature and Arf invariant independent of the choice of characteristic submanifold.
3. The signature and Arf invariant. Let M be a characteristic submanifold in Σ^{n+1}. Then $\Sigma^{n+1}=A \cup T A$ with $A \cap T A=M$. We have the Mayer-Vietoris sequence

$$
\cdots \rightarrow H_{p+1}\left(\Sigma^{n+1}\right) \rightarrow H_{p}(M) \xrightarrow{\left(i_{A}, i_{T A}\right)} H_{p}(A) \oplus H_{p}(T A) \rightarrow H_{p}\left(\Sigma^{n+1}\right) \rightarrow \cdots
$$

If $n=2 k, k>0$, and $p=k$, this becomes

$$
0 \rightarrow H_{k}\left(M^{2 k}\right) \xrightarrow{\left(i_{A}, i_{T A}\right)} H_{k}(A) \oplus H_{k}(T A) \rightarrow 0
$$

and so $H_{k}\left(M^{2 k}\right)=\operatorname{ker} i_{A} \oplus \operatorname{ker} i_{T A}$, and $T_{*} \operatorname{ker} i_{A}=\operatorname{ker} i_{T A}$. Since $M^{2 k} \subset \Sigma^{2 k+1}, M$ is orientable, and a bilinear form $B(x, y)=x \cdot T * y$ is defined, for x and y in ker i_{A}. Since T preserves orientation in $\Sigma^{2 k+1}$, it reverses orientation in $M^{2 k}$, and the bilinear form B is symmetric (skew-symmetric) when the intersection form $x \cdot y$ is is skew-symmetric (symmetric). Therefore, given (T, Σ^{n+1}) and a characteristic submanifold M^{n}, if $n \equiv 2(\bmod 4)$, the signature of the form $B(x, y)$ is determined, and turns out to be independent of the choice of characteristic submanifold. The reason for considering the signature of B is the following. If $x \in \operatorname{ker} i_{A} \subset H_{k}\left(M^{2 k}\right)$, and $M^{2 k}$ is ($k-1$)-connected, (which we achieve by exchanging handles between A and $T A$) then x is represented by an imbedded $S^{k} \subset M^{2 k}$, which bounds a cell $D^{k+1} \subset A$. (This statement may be false for $k=3$, [2], but a different argument applies in this case.) Supposing $M^{2 k}$ is totally geodesic near D^{k+1}, we take a tubular neighborhood N of D^{k+1}, replace A by $A-N$, and replace $T A$ by $T A \cup \bar{N}$. This will reduce the rank of $H_{k}(M)$. However, $(A-N) \cap(T A \cup \bar{N})=M^{\prime}$ is no longer T-invariant. We may obtain an invariant M^{\prime} if we replace A by $(A-N) \cup T \bar{N}$, and replace $T A$ by $(T A \cup \bar{N})-T N$. However, to do this we need $S^{k} \cap T S^{k}=\phi$. It is to accomplish this that we need $\sigma=0$
when k is odd and $c=0$ when k is even. The distinction between the two cases arises since if S^{k} and $T S^{k}$ intersect transversally in $M^{2 k}$ at a point p with intersection number 1 , then they intersect at $T p$ with intersection number $(-1)^{k+1}$.

The cohomology operation, $\psi(x)$, used to define the Arf invariant, merely serves to count, mod 2 , the number of pairs $(q, T q)$ of points in $S^{p} \cap T S^{p}$, where S^{p} represents the Poincaré dual of x, and the intersection is transverse.

References

1. C. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2, J. Reine Angew. Math. 183 (1941), 148-167.
2. A. Haefliger, Knotted ($4 k-1$)-spheres in $6 k$-space, Ann. of Math. 75 (1962), 452-466.
3. M. W. Hirsch and J. W. Milnor, Some curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964), 372-377.
4. M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. 77 (1963), 504-537.
5. R. Thom, Quelques propriétés global des variêtes diff érentiables, Comment. Math. Helv. 28 (1954), 17-86.

Institute for Advanced Study,
Princeton University and
Cornell University

[^0]: ${ }^{1}$ The authors were partially supported by contracts GP 2425 and GP 3685, respectively, with the National Science Foundation.
 ${ }^{2}$ The results hold equally in the piecewise linear category with little change in the proofs.

