INVOLUTIONS WITH NONZERO ARF INVARIANT

BY ISRAEL BERSTEIN ${ }^{1}$
Communicated by F. P. Peterson, February 26, 1968

Browder and Livesay [1] have associated with each differentiable fixed point free involution $T: \Sigma^{2 q+1} \rightarrow \Sigma^{2 q+1}$, where $\Sigma=\Sigma^{2 q+1}$ is a homotopy sphere, a "signature" $\sigma(\Sigma, T) \in Z(\equiv 0 \bmod 8)$ if q is odd, or an "Arf invariant" $c(\Sigma, T) \in Z_{2}$, if q is even. If $q \geqq 3$, then Σ contains a differentiably imbedded $2 q$-sphere invariant with respect to T if and only if $\sigma(\Sigma, T)=0$ or $c(\Sigma, T)=0[1]$.
S. López de Medrano has constructed for every odd q examples of involutions T with nonzero signature. We prove the following

Theorem. For every $k \geqq 1$ there exists a fixed point free differentiable involution $T: \Sigma^{4 k+1} \rightarrow \Sigma^{4 k+1}$ with $c(\Sigma, T) \neq 0$. Here Σ is the "Kervaire homotopy sphere," i.e., the generator of $b P_{4 k+2}$ [3], [4] if the latter group is $\neq 0$; otherwise it is the standard sphere.

The author understands that D. Montgomery and C. T. Yang have an example of a differentiable involution on Σ^{9} with $c(\Sigma, T) \neq 0$. The fact that there are PL-involutions with $c(\Sigma, T) \neq 0$ on any ($4 k+1$)-dimensional sphere follows from the classification of C. T. C. Wall [8].

I would like to thank G. R. Livesay for valuable suggestions and for many discussions which have helped me understand the problem.

1. Recall of definitions. Let T be a differentiable (or PL) fixed point free involution on $\Sigma=\Sigma^{4 k+1}$. A characteristic manifold $N^{4 k}$ is an invariant submanifold such that $\Sigma=A \cup B, N=A \cap B, B=T A$. There always exists such an N which is ($2 k-1$)-connected [1]. Let $G=H_{2 k}\left(N, Z_{2}\right)=H_{2 k}(N) \otimes Z_{2}$. For $x, y \in G$, the intersection coefficients $A(x, y)=x \cdot y \in Z_{2}$, and $B(x, y)=x \cdot T y$ define nonsingular symmetric bilinear forms on G and

$$
\begin{equation*}
A(x, T y)=B(x, y) \tag{1}
\end{equation*}
$$

Browder and Livesay [1] define a quadratic form $\psi_{0}: G \rightarrow Z_{2}$ (if $x \in G$ is represented by an immersed sphere σ in general position with respect to $T \sigma$, then $\psi_{0}(x)$ is 1 if and only if $\sigma \cap T \sigma$ consists of an odd number of pairs of points). One can also define [7] another qua-

[^0]dratic form $\mu_{0}: G \rightarrow Z_{2}$ by $\mu_{0}(x \otimes 1)=\frac{1}{2} x \cdot x \bmod 2$, where $x \in H_{2 k}(N, Z)$. ($x \cdot x$ is always even). We have [1], [7]
\[

$$
\begin{gather*}
\psi_{0}(x)=\psi_{0}(T x), \quad \mu_{0}(x)=\mu_{0}(T x) \tag{2}\\
\psi_{0}(x)=0 \tag{3}
\end{gather*}
$$
\]

if x can be represented by an immersed sphere σ disjoint from $T \sigma$;

$$
\begin{align*}
& \psi_{0}(x+y)=\psi_{0}(x)+\psi_{0}(y)+B(x, y) \tag{4}\\
& \mu_{0}(x+y)=\mu_{0}(x)+\mu_{0}(y)+A(x, y)
\end{align*}
$$

Let $G_{T}=G /(1+T) G$. By (1) and (2), we can define following [7], a pairing $C: G_{T} \otimes G_{T} \rightarrow Z_{2}$ and a quadratic form $\mu_{T}: G_{T} \rightarrow Z_{2}$ by setting

$$
\begin{equation*}
C(\bar{x}, \bar{y})=A(x, y)+B(x, y), \quad \mu_{T}(\bar{x})=\mu_{0}(x)+\psi_{0}(x) \tag{5}
\end{equation*}
$$

where $x, y \in G$ represent $\bar{x}, \bar{y} \in G_{T}$. Clearly

$$
\begin{equation*}
\mu_{T}(\bar{x}+\bar{y})=\mu_{T}(\bar{x})+\mu_{T}(\bar{y})+C(\bar{x}, \bar{y}) \tag{6}
\end{equation*}
$$

Let $i_{A}: G=H_{2 k}\left(N, Z_{2}\right) \rightarrow H_{2 k}\left(A, Z_{2}\right), i_{B}: G \rightarrow H_{2 k}\left(B, Z_{2}\right)$. Then $G=\operatorname{Ker} i_{A} \oplus \operatorname{Ker} i_{B}$.

$$
\begin{equation*}
T \operatorname{Ker} i_{A}=\operatorname{Ker} i_{B} \tag{7}
\end{equation*}
$$

and (see [1])

$$
\begin{gather*}
B \text { is nonsingular on } \operatorname{Ker} i_{A}, \tag{8}\\
A(x, y)=0 \quad \text { for } x, y \in \operatorname{Ker} i_{A} .
\end{gather*}
$$

Moreover,

$$
\begin{equation*}
\mu_{0}(x)=0 \quad \text { if } x \in \operatorname{Ker} i_{A} \tag{9}
\end{equation*}
$$

since $x=y \otimes 1, y \in \operatorname{Ker}\left(H_{2 k}(N, Z) \rightarrow H_{2 k}(A, Z)\right)$ and $y \cdot y=0$. By (7) Ker i_{A} maps isomorphically onto G_{T} and by (8) and (8^{\prime}) C is nonsingular. Let $e_{1}, \cdots, e_{n}, f_{1}, \cdots, f_{n} \in \operatorname{Ker} i_{A}$ be a symplectic basis for $B \mid \operatorname{Ker} i_{A}$. Then $\bar{e}_{1}, \cdots, \bar{e}_{n}, \bar{f}_{1}, \cdots, \bar{f}_{n} \in G_{T}$ form a symplectic basis for C and (5) and (9) imply

$$
\begin{equation*}
c(\Sigma, T)=\Sigma_{i} \psi_{0}\left(e_{i}\right) \psi_{0}\left(f_{i}\right)=c_{T}=\Sigma_{i} \mu_{T}\left(\bar{e}_{i}\right) \mu_{T}\left(\bar{f}_{i}\right) \tag{10}
\end{equation*}
$$

The advantage of the identity $c(\Sigma, T)=c_{T}$ is that c_{T} is independent of the choice of the symplectic basis $\tilde{e}_{i}, \bar{f}_{i} \in G_{T}$ [7], whereas $c(\Sigma, T)$ is independent of the choice of the characteristic submanifold N [1].
2. The involution T. We shall follow here a construction described in [6]. Let $S^{2 k+1} \subset R^{2 k+1}$ be the unit sphere $\|x\|=1$, where x $=\left(x_{0}, x, \cdots, x_{2 k+1}\right)$ and let $S^{2 k} \subset S^{2 k+1}$ be the "meridian" $x_{2 k+1}=0$. Define the rotation $\rho: S^{2 k+1} \rightarrow S^{2 k+1}$

$$
\rho\left(x_{0}, x_{1}, \cdots, x_{2 k+1}\right)=\left(x_{0},-x_{1}, \cdots,-x_{2 k+1}\right)
$$

with fixed points $P=(1,0, \cdots, 0)$ and $Q=(-1,0, \cdots, 0) ; \rho\left(S^{2 k}\right)$ $=S^{2 k}$. Let $\lambda:[-1,1] \rightarrow[0,1]=I$ be a C^{∞} function such that $\lambda(s)=0$ for $s \geqq \epsilon$ and $\lambda(s)=1$ for $s \leqq-\epsilon$. Define

$$
X \subset S^{2 k+1} \times S^{2 k+1} \times I
$$

to be the set of points $(x, y, 0)$ such that $d(x, y) \leqq \epsilon$ (where d is the natural Riemannian metric of $S^{2 k+1}$) and

$$
X^{\prime} \subset S^{2 k+1} \times S^{2 k+1} \times I
$$

the set of points $\left(x, y, \lambda\left(x_{0}\right)\right)$ such that $d(x, \rho(y)) \leqq \epsilon$. Both X and X^{\prime} are diffeomorphic to the total space of the disk tangent bundle of $S^{2 k+1}$ and $X \cap X^{\prime}$ is a neighborhood of $(P, P, 0)$. Let $Y=X \cup X^{\prime}$. Define the involution $T: Y \rightarrow Y$ by

$$
T(x, y, t)=(\rho(x), \rho(y), t)
$$

Then the only fixed points of T are $(P, P, 0),(Q, Q, 0)$ and $(Q, Q, 1)$. After straightening the corners (this can be done in a way compatible with T), Y becomes a differentiable manifold with boundary $\Sigma=\Sigma^{4 k+1}$ where Σ is the Kervaire homotopy sphere and $T \mid \Sigma$ has no fixed points. However, since the presence of corners does not affect the value of $c(\Sigma, T)$ we shall continue to use the initial explicit description of Y and of $\Sigma=\partial Y$.

Let $V \subset Y$ be the set of $(x, y, t) \in Y$ such that $x \in S^{2 k}$. Then $T V=V$ and V is a $(4 k+1)$-manifold with $\partial V=N=\Sigma \cap V$. Let also R $=\left\{(x, y, t) \mid x_{2 k+1} \geqq 0\right\}$. Then $Y=R \cup T R, V=R \cap T R$. Finally, if $A=\Sigma \cap R, B=\Sigma \cap T R$, then $\Sigma=A \cup B, N=A \cap B$, so that N is a characteristic manifold for (Σ, T).

Let $W \subset V$ be the set of $(x, y, t), x, y \in S^{2 k}$. Then W consists of two copies of the tangent disk bundle of $S^{2 k}$, "plumbed" together in a neighborhood of $(P, P, 0)$. The only nonvanishing reduced homology group of W is $H_{2 k}(W, Z)=Z+Z$; the two generators e, f are represented by the imbeddings $S^{2 k} \rightarrow W$ by ($x, x, 0$) and ($x, \rho(x), \lambda\left(x_{0}\right)$), $x \in S^{2 k}$. The intersection coefficients are

$$
\begin{equation*}
e \cdot e=f \cdot f=2, \quad e \cdot f=1 \tag{11}
\end{equation*}
$$

For $y \in S^{2 k+1}$ such that $d\left(S^{2 k}, y\right) \leqq \epsilon$, let $p(y) \in S^{2 k}$ be the point in which the great circle through y orthogonal to $S^{2 k}$ meets $S^{2 k}$. Let $W^{\prime} \subset \partial V=N$ be the set of $(x, y, t) \in N$ with $y_{2 k+1} \geqq 0$ and $W^{\prime \prime} \subset N$ the set of $(x, y, t) \in N$ with $y_{2 k+1} \leqq 0$. Then the correspondence (x, y, t) $\rightarrow(x, p(y), t)$ is a homeomorphism of W^{\prime} and of $W^{\prime \prime}$ onto W. More-
over, $N=W^{\prime} \cup W^{\prime \prime}, \partial W=W^{\prime} \cap W^{\prime \prime}$ and $T W^{\prime}=W^{\prime \prime}$. In other words N is the double of W and T maps one copy of W onto the other.
3. Computation of $c(\Sigma, T)$. Lefschetz duality and the exactness of the homology sequence of the pair $(W, \partial W)$, together with (11), imply that $H_{i}(\partial W, Z)=0, i \neq 0,2 k-1,4 k-1$ and that $H_{2 k-1}(\partial W)=Z_{3}$. Therefore the inclusion

$$
\begin{equation*}
j: H_{2 k}\left(W^{\prime}, Z_{2}\right) \oplus H_{2 k}\left(W^{\prime \prime}, Z_{2}\right) \xrightarrow{\approx} H_{2 k}\left(N, Z_{2}\right)=G \tag{12}
\end{equation*}
$$

is an isomorphism (which preserves intersections). By (11) and (12), G has a basis $e^{\prime}, f^{\prime}, T e^{\prime}, T f^{\prime}$ represented by e, f in W^{\prime} and their images by T in $W^{\prime \prime}$ and

$$
\begin{equation*}
A\left(e^{\prime}, f^{\prime}\right)=1, \quad A\left(e^{\prime}, e^{\prime}\right)=A\left(f^{\prime}, f^{\prime}\right)=0 \tag{13}
\end{equation*}
$$

and clearly

$$
\begin{equation*}
B\left(e^{\prime}, f^{\prime}\right)=B\left(e^{\prime}, e^{\prime}\right)=B\left(f^{\prime}, f^{\prime}\right)=0 \tag{14}
\end{equation*}
$$

Moreover, since $\frac{1}{2} e \cdot e=\frac{1}{2} f \cdot f=1$,

$$
\begin{equation*}
\mu_{0}\left(e^{\prime}\right)=\mu_{0}\left(f^{\prime}\right)=1 \tag{15}
\end{equation*}
$$

whereas (3) implies that

$$
\begin{equation*}
\psi_{0}\left(e^{\prime}\right)=\psi_{0}\left(f^{\prime}\right)=0 \tag{16}
\end{equation*}
$$

As a consequence of (13) and (14) the images $\bar{e}, \bar{f} \in G_{T}$ of e^{\prime}, f^{\prime} form a symplectic basis of G_{T} with respect to C and (15) and (16) imply that $\mu_{T}(\bar{e})=\mu_{T}(\bar{f})=1$ so that by (10)

$$
c(\Sigma, T)=c_{T}=1
$$

Remark 1. Since $b P_{6}=b P_{14}=0$ [4], [6] and also $b P_{30}=0$ (by the recent work of Browder), there are fixed point free involutions with Arf invariant 1 on S^{5}, S^{13} and S^{29}.

Remark 2. It would be interesting to know what the relation is between the $T: S^{5} \rightarrow S^{5}$ constructed in this paper and the nonstandard involution on S^{5} described in [2]. However, it follows from [8] that our involution is equivalent to a generator of the group Z_{4} of fixed point free involutions on S^{5}.

After this paper has been completed, the author learned that the existence of differentiable involutions on a homotopy sphere $\Sigma^{4 k+1}$ for all k with $c(\Sigma, T) \neq 0$ has been proven by an entirely different method by W. Browder (not yet published). Such an example on Σ^{9} was also obtained by D. Sullivan.

Added in proof. A PL-classification of fixed point free involutions analogous to that of [8], which also implies the existence of PLinvolutions with $c(\Sigma, T)=0$ has been obtained independently by S. López de Medrano (to appear in the Proceedings of the Tulane Conference on Transformation Groups, 1967).

References

1. W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc. 73 (1967), 242-245.
2. M. W. Hirsch and J. W. Milnor, Some curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964), 372-377.
3. M. Kervaire, A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257-270.
4. M. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. 77 (1963), 504-537.
5. S. L6pez de Medrano, Involutions on homotopy spheres and homology 3-spheres, Bull. Amer. Math. Soc. 73 (1967), 727-731.
6. J. W. Milnor, Differentiable manifolds which are homotopy spheres, Mimeographed notes, Princeton University, Princeton, N. J., 1959.
7. C. T. C. Wall, Surgery on non-simply connected manifolds, Ann. of Math. 84 (1966), 216-276.
8. -, Free piecewise linear involutions on spheres, Bull. Amer. Math. Soc. 74 (1968), 554-558.

Cornell University

[^0]: ${ }^{1}$ Partially supported by NSF Grant GP 3685.

