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Let mn denote the Haar measure of the torus Tn, the distinguished 
boundary of the unit polydisc Un in the space of n complex variables. 
If ƒ is holomorphic in Un, define 

(1) ƒ*(*) = \imf(rz) 

for those z E Tn for which this radial limit exists. Here z = (z%} • • •,£»), 
rz — (rzi, • • • , rzn). The various Hp-notms in Un, for 0< £<<*>, 
n = l,2,3, • • • , are defined by 

(2) IMU-- sup j f | ƒ(«)!»*».(«)}!/*. 
0<r<l \J Tn ) 

As in one variable, the inequality 

(3) log |/(0) | S f log I ƒ*(«)! **.(«) 

holds for every fEHp(Un). Define 

(4) A(/) - f log | ƒ*(*) | An^s) - log | /(O) | . 

For f EH2 (Un), let 5(f) denote the JEP-closure of the set of all prod
ucts Pft where P ranges over the polynomials in n variables; S(f) is 
the invariant sub space of H2(Un) generated byf. 

A very well-known theorem of Beurling states (in one variable) 
that 

(5) S(f) - H2(U) if and only if A{f) - 0. 

One of these implications holds equally well for several variables, 
as has been known for quite some time to Helson and Lowdenslager: 
IffEH*(Un) and S(/)=iI2 (£/*), then A(/)-0. Here is a sketch of a 
simple proof: (i) A(P/) =A(P) +A(f) ^A(f) for all P. (ii) A is an upper 
semicontinuous function on H2(Un). (iii) Therefore A(g)^.A(f) for 
every g ES(f). 
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Helson has conjectured [l, p. 23 ] that the converse is false for n = 2 
(hence also for n>2). (Actually, Helson stated the problem somewhat 
differently, in terms that involve only the boundary values of the 
functions under consideration.) This conjecture is correct: 

THEOREM. There exists a function f EH2 (U2) such that A(f)=0 but 
S(f)^H2(U2). 

The proof depends on the following two observations. 
(I) If FEH«(U), if F has no zero in U, and iffEH«>(U2) is defined 

by 

(6) /(«i, z2) = F((«! + «0/2), 

then A (ƒ)=(). 
(II) Associate to eachfEH2(U2) the function 

(7) (*/)(A) = ƒ ((1 + X)/2 (1 + X)/2) (X G £0. 

If0<p<i, there is a constant CP< <*> such that 

(8) IMUx ^ cJl/lk,. 
Thus ^ maps ff2(£/2) into #*(£/) if p < J. Note that Vf is essen-

tially the restriction of ƒ to a certain disc in U2 which touches T2 at 
just one point. 

PROOF OF (I). If | a | =1 , z-^az is a measure-preserving map of T2 

onto T2. Hence 

(9) f dm2(z) f log | f*(az) \ dnh(a) = f log | ƒ*(*) | <&»,(*), 

as is seen by interchanging the integrations on the left. If z = (01,22) G r2, 
if 215̂ 2:2, and if 2w~Zi+z2l then | w\ < 1, so that 

log I F(0) I = J log I F (pew) J dmi(a). 

This says that the inner integral on the left of (9) is equal to log | ƒ(0) | 
whenever Zi5*Z2, which is true for almost all zET2. Hence A(f) = 0. 

PROOF OF (II). For simplicity, assume ||/||2,2 = 1. Apply the Schwarz 
inequality to the Cauchy formula 

jf* (1 - * i f ) ( i - * i r t 

to obtain the estimate 
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I \-n\-2dmx(w) = ( 1 - | f J2)"1 

«/ T T 

if |fI < 1 . ForX = r ^ , 0 < r < l , it follows that 

| (*/)<X) | è {1 - | (1 + X)/2|»}-i â {r sin' (0/2)}~> 

which gives (8) with 

/ i * v \ up 

CP= | - J | sin(»/2) |-*<»J . 

PROOF OF THE THEOREM. Put F(X)=exp {(X+1)/(X — 1)} and 
associate ƒ with F as in (I). Then A(f) =0 . 

Fix p, 0<p<%. If P is any polynomial in two variables, (II) gives 

do) | | i - iy| |i .i ^ c ^ | i - *p .*y | | , f l . 

Note that (^/)(X) =e~lF2(S). Thus e^f is a non trivial inner function 
in U. Since multiplication by an inner function is an isometry in 
Hp(U) (relative to the metric given by ||g — h\\ltl iip<l) one sees that 
Hp(U)tyf is a closed subspace of HP(U) which does not contain 1. The 
right side of (10) is therefore bounded below by some positive con
stant, and so (10) implies that 1 is not in S(f). Hence S(f)?*H2(U2). 
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