PROOF OF A CONJECTURE OF HELSON¹

BY WALTER RUDIN

Communicated by H. Helson, March 1, 1968

Let m_n denote the Haar measure of the torus T^n , the distinguished boundary of the unit polydisc U^n in the space of n complex variables. If f is holomorphic in U^n , define

(1)
$$f^*(z) = \lim_{r \to 1} f(rz)$$

for those $z \in T^n$ for which this radial limit exists. Here $z = (z_1, \dots, z_n)$, $rz = (rz_1, \dots, rz_n)$. The various H^p -norms in U^n , for $0 , <math>n = 1, 2, 3, \dots$, are defined by

(2)
$$||f||_{p,n} = \sup_{0 < r < 1} \left\{ \int_{T^n} |f(rz)|^p dm_n(z) \right\}^{1/p}$$

As in one variable, the inequality

(3)
$$\log |f(0)| \leq \int_{T^n} \log |f^*(z)| dm_n(z)$$

holds for every $f \in H^p(U^n)$. Define

(4)
$$\Delta(f) = \int_{T^n} \log |f^*(z)| dm_n(z) - \log |f(0)|.$$

For $f \in H^2(U^n)$, let S(f) denote the H^2 -closure of the set of all products Pf, where P ranges over the polynomials in n variables; S(f) is the *invariant subspace of* $H^2(U^n)$ generated by f.

A very well-known theorem of Beurling states (in one variable) that

(5)
$$S(f) = H^2(U)$$
 if and only if $\Delta(f) = 0$.

One of these implications holds equally well for several variables, as has been known for quite some time to Helson and Lowdenslager: If $f \in H^2(U^n)$ and $S(f) = H^2(U^n)$, then $\Delta(f) = 0$. Here is a sketch of a simple proof: (i) $\Delta(Pf) = \Delta(P) + \Delta(f) \ge \Delta(f)$ for all P. (ii) Δ is an upper semicontinuous function on $H^2(U^n)$. (iii) Therefore $\Delta(g) \ge \Delta(f)$ for every $g \in S(f)$.

¹ Research partially supported by NSF Grant GP-6764.

WALTER RUDIN

Helson has conjectured [1, p. 23] that the converse is false for n = 2 (hence also for n > 2). (Actually, Helson stated the problem somewhat differently, in terms that involve only the boundary values of the functions under consideration.) This conjecture is correct:

THEOREM. There exists a function $f \in H^2(U^2)$ such that $\Delta(f) = 0$ but $S(f) \neq H^2(U^2)$.

The proof depends on the following two observations.

(I) If $F \in H^{\infty}(U)$, if F has no zero in U, and if $f \in H^{\infty}(U^2)$ is defined by

(6)
$$f(z_1, z_2) = F((z_1 + z_2)/2),$$

then $\Delta(f) = 0$.

(II) Associate to each $f \in H^2(U^2)$ the function

(7)
$$(\Psi f)(\lambda) = f \left((1+\lambda)/2 \ (1+\lambda)/2 \right) \quad (\lambda \in U).$$

If $0 , there is a constant <math>C_p < \infty$ such that

(8)
$$\|\Psi f\|_{p,1} \leq C_p \|f\|_{2,2}.$$

Thus Ψ maps $H^2(U^2)$ into $H^p(U)$ if $p < \frac{1}{2}$. Note that Ψf is essentially the restriction of f to a certain disc in U^2 which touches T^2 at just one point.

PROOF OF (I). If $|\alpha| = 1$, $z \rightarrow \alpha z$ is a measure-preserving map of T^2 onto T^2 . Hence

(9)
$$\int_{T^2} dm_2(z) \int_{T} \log |f^*(\alpha z)| dm_1(\alpha) = \int_{T^2} \log |f^*(z)| dm_2(z),$$

as is seen by interchanging the integrations on the left. If $z = (z_1, z_2) \in T^2$, if $z_1 \neq z_2$, and if $2w = z_1 + z_2$, then |w| < 1, so that

$$\log |F(0)| = \int_{T} \log |F(\alpha w)| dm_1(\alpha).$$

This says that the inner integral on the left of (9) is equal to $\log |f(0)|$ whenever $z_1 \neq z_2$, which is true for almost all $z \in T^2$. Hence $\Delta(f) = 0$.

PROOF OF (II). For simplicity, assume $||f||_{2,2} = 1$. Apply the Schwarz inequality to the Cauchy formula

$$f(\zeta, \zeta) = \int_{T^2} \frac{f^*(z_1, z_2)}{(1 - \bar{z}_1 \zeta)(1 - \bar{z}_2 \zeta)} \, dm_2(z)$$

to obtain the estimate

[July

728

$$|f(\zeta,\zeta)| \leq \left\{ \int_{T^2} |1 - \bar{z}_{1\zeta}|^{-2} |1 - \bar{z}_{2\zeta}|^{-2} dm_2(z) \right\}^{1/2}$$
$$= \int_{T} |1 - \bar{w}\zeta|^{-2} dm_1(w) = (1 - |\zeta|^2)^{-1}$$

if $|\zeta| < 1$. For $\lambda = re^{i\theta}$, 0 < r < 1, it follows that

$$| (\Psi f)(\lambda) | \leq \{1 - | (1 + \lambda)/2 |^2\}^{-1} \leq \{r \sin^2 (\theta/2)\}^{-1}$$

which gives (8) with

$$C_p = \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sin(\theta/2) \right|^{-2p} d\theta \right\}^{1/p}.$$

PROOF OF THE THEOREM. Put $F(\lambda) = \exp \{(\lambda+1)/(\lambda-1)\}$ and associate f with F as in (I). Then $\Delta(f) = 0$.

Fix p, 0 . If P is any polynomial in two variables, (II) gives

(10)
$$||1 - Pf||_{2,2} \ge C_p^{-1} ||1 - \Psi P \cdot \Psi f||_{p,1}.$$

Note that $(\Psi f)(\lambda) = e^{-1}F^2(\lambda)$. Thus $e\Psi f$ is a nontrivial inner function in U. Since multiplication by an inner function is an isometry in $H^p(U)$ (relative to the metric given by $||g-h||_{p,1}^p$ if p < 1) one sees that $H^p(U)\Psi f$ is a closed subspace of $H^p(U)$ which does not contain 1. The right side of (10) is therefore bounded below by some positive constant, and so (10) implies that 1 is not in S(f). Hence $S(f) \neq H^2(U^2)$.

Reference

1. Henry Helson, *Lectures on invariant subspaces*, Academic Press, New York, 1964. UNIVERSITY OF WISCONSIN

1968]