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ON THE FACTORIZATION OF A CLASS OF 
DIFFERENCE OPERATORS1 

BY JET WIMP AND JERRY FIELDS 

Communicated by Wolfgang Wasow, June 19, 1968 

The differential equation for the Meijer G-function (generalized 
hypergeometric function) with respect to the argument z} [l], can be 
written in an elegant factored form using the differential operator 
z(d/dz). Recently, [2], [3], it has been found that particular Meijer 
G-functions satisfy difference equations with respect to a parameter, 
and it is the purpose of this paper to deduce analogous factored forms 
for these difference equations. 

Consider the function 

(1) G(x) - — f *Q(s)K(s, x, y)ds, 
2inJ L 

m k 

r(c - s) n r(J, - s)v(i - c + s) n r(i - a, + *) 
(2) « P 

n ra-*,+*) n Haf-s) 
0 S m ^ q, 0 ^ k g p; aj 7* bi9 1 £ j £ k, 1 ^ i ^ tn, 

(3) K(s, x, y) = T(x + ôs)/T(x + y + es), e and ô integers, ô è 0, 

where L is an infinite loop contour which separates the poles of T (x + bs) 
-T(l-c+s)]^wmlT(l-ai+s) f r o m t h o s e o f T(c~s)Il?-iTQ>j--s). 
Here and in what follows, we tacitly assume that the complex quan-

1 This work was supported by the United States Atomic Energy Commission 
under Contract No. AT(11-1)1619. 
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tities a», bj, c, x, y and z are such that the contour L actually exists. 
For more details about such integrals, see [l, p. 20]. 

We define two linear difference operators with respect to x, 

SïOu, x, y) = a$ + 08, a = (x - /i«)/A, 0 « foi - * - y)/A, 

3ï(u, #, y) 
(4) «*(*, y) = lim - £ i - L i l = «*3 + 0*8, 

a* = - « / A , 0* = 6/A, A = x(e - *) - yd 7* 0 

where (g is the shift operator (£ƒ(#)=ƒ (# + 1), and 3 is the identity 
operator. Direct computation shows that 

80*, *, y)£($, *, y) = K(s, a, y + 1)0* + s), 
(5) 

»*(*, y)2T(*, *, y) = £(*, a;, y + 1). 

Finally, we set 

S = *(gô 1 1 8 ( 1 - ahx9y + u + p - j ) f l ? ï * f e y + M - J ) 
y-i y-i 

(6) + (-1)***+» n «(-»* *iy + » + s - i ) f [ «*(*, ^ + » - i)> 

w = max [0, q — p + e — ô], Î> = max [0, p — # + ô — e]. 

In the ordinary product notation used above, the order of the factors 
must be interpreted as follows: 

I I Py = P1P2 • • • Pr. 

Our principal result is the following 

THEOREM. For the y awd 2 as previously restricted, 

zeT(x + 6c) 
$QG(x) = (-!)*>+* 

T(x + y + v + q + ec) 

(7) n r(i + c - a,) II r(i + b, - c) 

Û r(c - b}) f i T(a, - c) 
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PROOF. By applying 93 directly to the integrand of (1), and using 
(5), together with 

(8) 0(* + 1) = 0(*)(- l)«+w*+i f [ (1 - aj + s)/ f [ (1 - h + s) > 
y-i y-i 

one readily verifies that 

%G(x) = f *+*Q(s) I I (1 - *y + *)#(*> * + 5, y + u + p)ds 
( 9 )

 2 ? r i J L '-1 

ti+*Q(s) Ö (1 - ay + j)JC(* + 1, *, y + v + 3)&. 
y-i - - f 

Asi£(s, x+Sf y+u+p) = K(s+i, x, y+u+p+ô—e), and w+/>+8—e 
= fl+2, 93G(#) is just equal to the sum of the residues of 2*+1Ö(5) 
• HjLi(l —a,j+s)K(s+l, x, y+v+q) contained in the region between 
L and L —1. By inspection, we see the only possible residue is at 
s = c — 1, and (9) reduces to (7). 

REMARK 1. It should be noted that there is a certain arbitrariness 
in the definition of 93, which is attributable to the symmetry property 

(10) a u *, y + 1)910*!, *, y) = «(MI, *, y + i)«G*a, *, y). 

Clearly, 93 can be rewritten in the form 

93= E U i + * ; Bo = 0, 
(11) *-o 

r = max{#, q + e, p + ô, p + ô — e\. 

REMARK 2. In reference [3] it was shown that the extended Jacobi 
functions 

/ — n,n + \,ar, 11 \ 
r+3 F11 2 1 

(12) V " , ' ; 

IT T(oj) 
T(n+l)fJi 1>r+i! / 11 — » — X, 1 — <rP,0, » + 1\ 

-T(n + X ) r G ^ \ z \ 0 > 1 _ p t ) 
11 I>y) 
y-i 

and the extended Laguerre functions 
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(13) V Pt U , 

r(» + i)IIr(py) 
y-i i,r+i / 1 — oy, 0, » + 1 \ 

= G>+2,t+l I * ) 

nrw V k l _ " ' 
satisfy normalized difference equations involving a difference operator 
of the form (11) with 

(14) r = max[r + 2, t] 

and 

(15) r = max[r + 1, t], 

respectively. Furthermore, it was shown that these functions satisfied 
no other difference equation so normalized of orders ^ those given by 
(14) and (IS), respectively, provided certain conditions on pi} <j^ X 
were satisfied. 

But the G-function on the right in (12) is the integral (1) with 

m = 0, k = p = r, q = t} c = 0, x = n + X, 
(16) 

y = 1 - X, 0 = 1, € = - 1 , 

while the right-hand side of (13) is, apart from a constant multiple, 
(1) with 

m = 0, k = p = r, q = t> c == 0, # = ^ + 1 , 

y = 0, 0 = 0, c = - 1 . 

Furthermore, the formula for r in (11) gives (14) for the values 
(16), and (IS) for the values (17). In view of the aforementioned 
uniqueness of the difference equations, it follows that (6) will yield 
a factorization of those difference equations given in [3]. 
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