ON GAUSSIAN SUMS

BY TAKASHI ONO
 Communicated by G. D. Mostow, May 17, 1968

This note is an outline of some of the author's recent work on a generalization of Fourier transforms in adele spaces. Here we treat only the simplest case. The details and a generalization for an arbitrary ground \boldsymbol{A}-field and a system of polynomials will be given elsewhere. For the unexplained notions, see [1], [2] and [3].

Let $f(X)$ be an absolutely irreducible polynomial in $\mathcal{Q}[X]$ $=\boldsymbol{Q}\left[X_{1}, \cdots, X_{n}\right]$ such that the corresponding hypersurface H $=\left\{x \in \Omega^{n} ; f(x)=0\right\}$ is nonsingular, where Ω denotes a universal domain containing Q. Let V be the complement of H in Ω^{n} viewed as an algebraic variety in Ω^{n+1} in an obvious way. Hence the n-form $\omega=f^{-1} d x, d x=d x_{1} \wedge \cdots \wedge d x_{n}$, is everywhere holomorphic and never zero on V. For each valuation v of \mathcal{Q}, denote by \mathcal{Q}_{v} the completion of \mathcal{Q} at v. Denote by A, A^{*} the adele ring and the idele group of Q, respectively. For an idele $a \in A^{*},|a|_{A}$ will denote the module of a. The adelization V_{A} of V is then given by $V_{A}=\left\{x \in A^{n} ; f(x) \in A^{*}\right\}$. We denote by $\delta\left(\boldsymbol{Q}_{0}^{n}\right), \delta\left(\boldsymbol{A}^{n}\right)$ the space of Schwartz functions on $\boldsymbol{Q}_{0}^{n}, \boldsymbol{A}^{n}$, respectively. For each v, the n-form ω on V induces a measure ω_{v} on $V_{Q_{V}}$ and we know that there is a well-defined measure $d V_{A}$ on V_{A} of the form $\prod_{v} \lambda_{0}^{-1} \omega_{v}$ with $\lambda_{\infty}=1$ and $\lambda_{p}=1-p^{-1}$. We know that the function

$$
\begin{equation*}
Z(f, \phi, s)=\int_{V_{A}} \phi(x)|f(x)|_{A}^{e} d V_{A}, \quad \phi \in \delta\left(A^{n}\right) \tag{1}
\end{equation*}
$$

represents a meromorphic function for $\operatorname{Re} s>\frac{1}{2}$ having the single simple pole at $s=1$ with the residue $\int_{A^{n}} \phi(x) d A^{n}$, where $d A^{n}$ is the canonical measure on A^{n} (cf. [4]).

Let χ be a basic character of A which identifies the additive group A with its own dual and let χ_{v} be the similar character of the additive group Q_{v} induced by χ. For each $\xi \in A$ and $\phi \in \delta\left(A^{n}\right)$, the function $\phi_{\xi}(x)=\phi(x) \chi(f(x) \xi)$ is again in $S\left(A^{n}\right)$ and hence we have

$$
\begin{equation*}
\operatorname{Res}_{s=1} Z\left(f, \phi_{\xi}, s\right)=\int_{A^{n}} \phi(x) \chi(f(x) \xi) d A^{n} \stackrel{\text { def. }}{=} G_{f} \phi(\xi) . \tag{2}
\end{equation*}
$$

The transform $\phi \rightarrow \mathcal{G}_{f} \phi$ is a linear map of $\mathcal{S}\left(A^{n}\right)$ into the space of con-
tinuous functions on A, which boils down to the Fourier transform $\phi \rightarrow \mathfrak{F} \phi$ when $n=1$ and $f(X)=X .{ }^{1}$

Now, put $\eta=\operatorname{Res} \omega$, the residue form of ω, this being an ($n-1$)-form on the hypersurface H everywhere holomorphic and never zero. When the formal product $\Pi_{v} \eta_{v}$ (with no convergence factors) really defines a measure on H_{A}, we say that the canonical measure $d H_{A}=\Pi_{v} \eta_{v}$ exists on H_{A}. The classical theory of trigonometric sums suggests, at least formally, the equality

$$
\begin{equation*}
\int_{A} \mathcal{G}_{f} \phi d \boldsymbol{A}=\int_{H_{A}} \phi d H_{A} \quad \text { for all } \phi \in \delta\left(A^{n}\right) \tag{3}
\end{equation*}
$$

where the right-hand side is essentially the singular series for $f(X)$ including the gamma factor. In view of (1), (2), one can interpret (3) as an equality connecting integrals on V_{A} and H_{A}. More precisely, one can prove the following

Theorem 1. If $f(X)$ satisfies the condition

$$
\begin{equation*}
\mathcal{G}_{f} \phi \in L^{1}(A) \text { for all } \phi \in S\left(A^{n}\right) \tag{C}
\end{equation*}
$$

then the canonical measure $d H_{A}$ exists, $\phi \mid H_{A} \in L^{1}\left(H_{A}\right)$ for all $\phi \in \delta\left(A^{n}\right)$ and (3) holds.

Thus, the real problem is to find conditions on $f(X)$ so that (C) holds. For example, (C) is false for $f(X)=X_{1}^{2}+\cdots+X_{n}^{2}$ with $n \leqq 4$. Although we are still far from the complete solution of the problem, we can give the following sufficient conditions.

Theorem 2. The condition (C) holds if $f(X)$ satisfies the following two conditions:
(I) $\operatorname{grad} f(x) \neq 0$ for all $x \in \Omega^{n}$,
(II) $\left|\sum_{x \in F_{D}^{n}} \zeta_{p}^{f^{(p)}(x)}\right| \leqq c p^{n-2-\epsilon}$ for almost all p, where c, ϵ are positive constants independent of $p, f^{(p)}(X)$ is the polynomial over the finite prime field F_{p} obtained by reducing the coefficients of $f(X)$, for almost all p, and ζ_{p} is any one of the primitive pth roots of 1.

For example, $f(X)=X_{1}^{r_{1}} X_{2}^{r_{2}}+X_{1}+\sum_{i=3}^{n} X_{i}^{t_{i}}, r_{j} \geqq 2,1 \leqq j \leqq n$, satisfies (I), (II) whenever $n \geqq 7$.

Remark 1. The condition (I) implies that $\operatorname{grad} f(x) \neq 0$ for all $x \in Q_{\|}^{n}$, for all v. For this case one proves the stronger result:

[^0]$$
\mathcal{G}_{r} \phi(\xi)=\int_{Q_{n}^{n}} \phi(x) x_{v}(f(x) \xi) d x_{v} \in S\left(Q_{v}\right) \quad \text { for all } \phi \in S\left(Q_{v}^{n}\right)
$$

This fact for $v=\infty$ has been suggested to us by Hörmander. We then found that the same is true for $v=p$.

Remark 2. Unfortunately, the diagonal polynomial $f(X)$ $=\sum_{i=1}^{n} a_{i} X_{i}^{r_{i}}$ does not, in general, satisfy (I). A direct verification of the condition (C) for such a polynomial seems to be not easy because arbitrary Schwartz functions are involved. However, (I) is intrinsic and this might be the case which must precede any attempt at a general theory.

References

1. A. Weil, Basic number theory, Springer-Verlag, New York, 1967.
2. -, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.
3. -_, Sur la formule de Siegel dans la thêorie des groupes classiques, Acta Math. 113 (1965), 1-87.
4. T. Ono, An integral attached to a hypersurface, Amer. J. Math. (to appear).

University of Pennsylvania, Philadelphia, Pennsylvania 19104

[^0]: ${ }^{1}$ Such a transform has been introduced by Weil in more general setting [3, Chapter I, No. 1]. For p-adic case, the evaluation of the transform is substantially the Gaussian sum for the polynomial $f(X)$.

