A FACTOR THEOREM FOR FRECHET MANIFOLDS

BY R. D. ANDERSON AND R. SCHORI ${ }^{1}$
Communicated by R. D. Anderson, August 9, 1968

1. Introduction. A Frechet manifold (or F-manifold) is a separable metric space M having an open cover of sets each homeomorphic to an open subset of the countable infinite product of open intervals, s. A Q-manifold is a separable metric space M having an open cover of sets each homeomorphic to an open subset of the Hilbert cube, I^{∞}. It is known that all separable metric Banach manifolds modeled on separable infinite-dimensional Banach spaces are F-manifolds. The following are the principle theorems of this paper.

Theorem I. If M is any F-manifold, then $s \times M$ is homeomorphic to M.

Theorem II. If M is any Q-manifold, then $I^{\infty} \times M$ is homeomorphic to M.

Since s is known, [1] or [3], to be homeomorphic to $s \times I^{\infty}$, from Theorem I we immediately have the following.

Corollary. If M is any F-manifold, then $I^{\infty} \times M$ is homeomorphic to M.

Almost identical proofs of Theorems I and II can be given. To emphasize the ideas of our proofs of Theorems I and II we shall outline instead a proof of the similar but notationally easier

Theorem I^{\prime}. If M is any F-manifold and J^{0} is the open interval ($-1,1$), then $J^{0} \times M$ is homeomorphic to M.
2. Lemma 2.1 implies Theorem I^{\prime}.

Definition. Let r be a map, i.e. continuous function, of a space X into the closed unit interval $[0,1]$. Let $J^{0}(0)=\{0\}$ and for $t \in(0,1]$, let $J^{0}(t)=(-t, t)$. Then $J^{0} X^{r} X=\left\{(y, x) \in J^{0} \times X: y \in J^{0}(r(x))\right\}$ is the variable product of J^{0} by X (with respect to r).

Lemma 2.1. Let U be an open subset of s, let $V \subset W \subset U$ where W is open and V is closed in U, and let $J^{0} \times{ }^{r 0} U$ be a variable product of J^{0}

[^0]by U. There exists a homeomorphism H of $J^{0} X^{\text {ro }} U$ onto a variable product $J^{0} \times^{r} U$ such that (1) $r \leqq r_{0}$, (2) $r(V)=0$, and (3) $H \mid J^{0} \times^{r 0}\left[(U \backslash W) \cup r_{0}^{-1}(0)\right]$ is the identity.

Outline of a proof that Lemma 2.1 implies Theorem I'. Since M is separable and metric, there exists a countable star-finite open cover G of M with sets homeomorphic to open subsets of s. (By starfinite cover we mean a cover such that the closure of each element intersects only finitely many closures of other members of the cover.) Thus if $V \subset U$ where $U \in G$ and V is closed in M and $J^{0} \times^{r 0} M$ is a variable product of J^{0} by M, then by taking an open set W in M such that $W \supset V$ and $\mathrm{Cl}_{M} W \subset U$, Lemma 2.1 will imply the existence of a homeomorphism of $J^{0} \times^{r 0} U$ that has an automatic extension to a homeomorphism H of $J^{0} \times^{r_{0}} M$ where (1) $r \leqq r_{0}$, (2) $r(V)=0$, and (3) $H \mid J^{0} \times^{r_{0}}\left[(M \backslash U) \cup r_{0}^{-1}(0)\right]$ is the identity.

As suggested by Theorem 2 of [2], we take a special ordering of the elements of G, say $\left\{U_{i}\right\}_{i>0}$. Now take a cover $\left\{V_{i}\right\}_{i>0}$ of M where, for each $i>0, V_{i}$ is a closed set contained in U_{i}. For each $i>0$, let H_{i} be a homeomorphism from $J^{0} \times^{r_{i-1}} M$ onto $J^{0} \times^{r_{i} M}$ where $r_{i} \leqq r_{i-1} \leqq \cdots \leqq r_{0}=1, r_{i}\left(V_{i}\right)=0$, and $H_{i} \mid J^{0} \times^{r_{i-1}}\left(M \backslash U_{i}\right)$ is the identity. Then $\left(H_{i} \circ \cdots \circ H_{1}\right)_{i>0}$ converges to a homeomorphism of $J^{0} \times M$ onto $\{0\} \times M$ which is homeomorphic to M.
3. Two lemmas leading to Lemma 2.1. Let $s=\prod_{i>0} J_{i}^{0}$ where for each $i>0, J_{i}^{0}=J^{0}$. Let $\pi: J^{0} \times s \rightarrow s$ be the natural projection onto s and for $n>0$, let π_{n} be defined on s as follows. For $z=\left(z_{1}, z_{2}, \cdots\right) \in s$, let $\pi_{n}(z)=\left(z_{1}, \cdots, z_{n}, 0,0, \cdots\right)$. Also, for Y a space and $f: s \rightarrow Y$, define $f^{*}: J^{0} \times s \rightarrow Y$ by $f^{*}=f \pi$.

Lemma 3.1. There exists a map

$$
h:\left(J^{0} \times s\right) \times[0,1] \times[1, \infty) \rightarrow J^{0} \times s
$$

such that if $t \in[0,1]$ and $u \in[1, \infty)$ are fixed where $n \leqq u$, the map

$$
H: J^{0} \times s \rightarrow J^{0} \times s
$$

defined by $H(p)=h(p, t, u)$ for $p \in J^{0} \times s$ is a homeomorphism of $J^{0} \times s$ onto $J^{0} \times^{r} s$ where (1) $r=1-t$, (2) if $t=0, H$ is the identity, and (3) $\pi_{n}^{*}=\pi_{n}^{*} H$.

Outline of Proof. It suffices to describe h. We first describe for any integer $n>0$ a map h^{\prime} of $\left(J^{0} \times s\right) \times[0,1) \times\{n\}$ onto $J^{0} \times s$.

For $x=\left(x_{0}, x_{1}, \cdots\right) \in J^{0} \times s$, let $h^{\prime}(x, 0, n)=x$ and as t varies from 0 to $\frac{1}{2}$ let the 0 th and $(n+1)$ th coordinates of x be "rotated" so that at $t=\frac{1}{2},\left(x_{0}, x_{n+1}\right)$ becomes $\left(x_{n+1},-x_{0}\right)$ while for $0 \leqq t \leqq \frac{1}{2}$ all other coordinates are left fixed.

Thus, $h^{\prime}\left(x, \frac{1}{2}, n\right)=\left(x_{n+1}, x_{1}, \cdots, x_{n},-x_{0}, x_{n+2}, \cdots\right)$. For $i>0$, as t varies from $1-2^{-i}$ to $1-2^{-i-1}$, "rotate" the 0 th and $(n+i+1)$ th coordinates leaving all other coordinates fixed so that for each $i>0$,

$$
\begin{aligned}
h^{\prime}(x, 1- & \left.2^{-i}, n\right) \\
& =\left(x_{n+i}, x_{1}, \cdots, x_{n},-x_{0},-x_{n+1}, \cdots,-x_{n+i-1}, x_{n+i+1}, \cdots\right)
\end{aligned}
$$

To define h from h^{\prime} we specify that $h(x, 1, n)=\left(0, x_{1}, \cdots, x_{n},-x_{0}\right.$, $\left.-x_{n+1},-x_{n+2}, \cdots\right)$ and we introduce for any time $t<1$, a factor of $1-t$ in the 0 th coordinate place of h^{\prime}. Indeed for each integer $n \geqq 1, h \mid\left(J^{0} \times s\right) \times[0,1] \times\{n\}$ becomes an isotopy. It is now possible to extend the domain of h for values of u between n and $n+1$ by use of "rotations" similar in nature to the "rotations" used in defining h^{\prime} for a fixed n.

An open set E of s is an n-basic open set in s if $E=E_{1} \times \cdots \times E_{n}$ $\times \prod_{i>n} J_{i}^{0}$ where each E_{i} is open in J_{i}^{0} and is a subinterval of J_{i}^{0}.

Definition. Let W be open in s and let $\left\{G_{i}\right\}$ be a star finite collection of m_{i}-basic open sets in s whose union is W. For each $x \in W$ let

$$
m_{x}=\operatorname{minimum}\left\{m_{i}: x \in G_{i}\right\}
$$

Let Y be a space. A map $f: W \rightarrow Y$ is a local product map of W with respect to the G_{i} and m_{i} if $f(x)=f\left(\pi_{m_{x}}(x)\right)$ for each $x \in W$. If, additionally, $Y=[1, \infty)$ and $f(x) \geqq m_{x}$ for each $x \in W$, then f is a local product indicator map of W with respect to the G_{i} and the m_{i}.

The strategy is to replace the t and u of Lemma 3.1 by local product maps. The following technical lemma (not proved here) asserts the existence of the proper type of local product maps.

Lemma 3.2. Let U be an open subset of s and let $V \subset W \subset U$ and $A \subset U$ where W is open and V and A are closed in U. There exist a countable star finite collection $\left\{G_{i}\right\}$ of m_{i}-basic open sets in s whose union is $W \backslash A$ and maps $\phi: U \backslash A \rightarrow[0,1]$ and $g: W \backslash A \rightarrow[1, \infty)$ such that (1) $\phi(V \backslash A)=1$, (2) $\phi((U \backslash W \backslash \backslash A)=0$, (3) $\phi \mid W \backslash A$ and g are a local product map and a local product indicator map, respectively, of $W \backslash A$ with respect to the G_{i} and m_{i}, and (4) g is unbounded near A, that is, for any $x \in A \cap \mathrm{Cl}(W \backslash A)$ and $n>0$, there is a neighborhood $B(x)$ such that $g \mid(W \backslash A) \cap B(x)>n$.
4. Proof of Lemma 2.1. By Lemma 3.2 take a star finite collection $\left\{G_{i}\right\}$ of m_{i}-basic open sets and the maps ϕ and g for the case when $A=r_{0}^{-1}(0)$. Now, let

$$
h:\left(J^{0} \times s\right) \times[0,1] \times[1, \infty) \rightarrow J^{0} \times s
$$

be the map of Lemma 3.1 and define

$$
H_{1}: J^{0} \times W \backslash r_{0}^{-1}(0) \rightarrow J^{0} \times s
$$

by $H_{1}(p)=h\left(p, \phi^{*}(p), g^{*}(p)\right)$ for $p \in J^{0} \times W \backslash r_{0}^{-1}(0)$. It can be shown that H_{1} is a homeomorphism onto $J^{0} \times^{r_{1}} W \backslash r_{0}^{-1}(0)$ where $r_{1}=1-\phi$. Clearly the map k from $J^{0} \times{ }^{r_{0}} W \backslash r_{0}^{-1}(0)$ to $J^{0} \times W \backslash r_{0}^{-1}(0)$ defined by $k(y, z)=\left(y r_{0}^{-1}(z), z\right)$ is a homeomorphism. Also $k^{-1} H_{1} k$ is a homeomorphism from $J^{0} \times^{r_{0}} W \backslash r_{0}^{-1}(0)$ onto $J^{0} \times^{r} W r_{0}^{-1}(0)$ where $r=(1-\phi) r_{0}$. Now define $H: J^{0} \times^{r_{0}} U \rightarrow J^{0} \times^{r} U$ by $H=k^{-1} H_{1} k$ on $J^{0} \times r_{0} W r_{0}^{-1}(0)$ and $H=$ identity on $J^{0} \times\left[(U \backslash W) \cup r_{0}^{-1}(0)\right]$. We show that H is continuous. Since $\phi\left((U \backslash W) \backslash r_{0}^{-1}(0)\right)=0$, from condition 2 of Lemma 3.1 it follows that $H \mid J^{0} \times\left(W \backslash r_{0}^{-1}(0)\right)$ and the identity map on $J^{0} \times\left[(U \backslash W) \backslash r_{0}^{-1}(0)\right]$ are compatible. To show that these are compatible with the identity $J^{0} \times{ }^{r_{0}} r_{0}^{-1}(0)$ we check the coordinatewise continuity of H. The continuity of r_{0} gives the continuity of H on the first, or J^{0}, coordinate and g becoming unbounded near $r_{0}^{-1}(0)$ yields the continuity of H on the second, or U, coordinate. The other conditions of Lemma 2.1 are easily seen to be satisfied.

References

1. R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216.
2. R. D. Anderson, David W. Henderson and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. (to appear).
3. Czeslaw Bessaga and Victor Klee, Every non-normable Fréchet space is homeomorphic with all of its closed convex bodies, Math. Ann. 163 (1966), 161-166.

Louisiana State University, Baton Rouge, Louisiana 70803

[^0]: ${ }^{1}$ This paper is a brief resume of a paper Factors of infinite-dimensional manifolds, submitted by the authors to Trans. Amer. Math. Soc. The research was supported in part under NSF grants GP 6867 and GP 8637.

