PERIODIC ORBITS OF HYPERBOLIC DIFFEOMORPHISMS AND FLOWS¹

BY MICHAEL SHUB

Communicated by J. Moser, July 31, 1968

Artin and Mazur in [1] proved that a dense subset of the C^* endomorphisms of a compact differentiable manifold satisfy an exponential growth condition on their isolated periodic points, and they defined a ζ -function which for these endomorphisms has a positive radius of convergence. In [2] and [3] K. Meyer gave a simple proof that hyperbolic diffeomorphisms and flows of Smale [4] which are C^2 have exponential growth. It is the purpose of this note to give an even simpler proof of Meyer's theorems in a C^1 setting. Since the hyperbolic diffeomorphisms and flows are not dense [5] these results are a long way from including the results of [1].

Let M be a compact differentiable manifold; let $f \in \text{Diff}(M)$ be a C^1 diffeomorphism, and let $N_m(f)$ be the number of periodic points of f of period m.

THEOREM 1. Let f satisfy Axiom A of [4, I.6], then there exist constants c and k such that $N_m(f) \leq ck^m$.

PROOF. f is expansive [4, I.8.7], i.e., $\exists \epsilon > 0$ such that given x, y distinct periodic points of $f \exists n \in \mathbb{Z}$ such that $d(f^n(x), f^n(y)) \geqq \epsilon$. Since f is C^1 it is Lipshitz. Let its Lipshitz constant be k which we may choose >1. If x and y are both of period p we may choose n in $0 \le n < p$ and have $d(x, y) \ge \epsilon/k^{p-1}$ by expansiveness. Thus there exists a constant c such that $N_p(f) \le c V(M)(2k^{p-1}/\epsilon)^{\dim M}$ where V(M) is the volume of M.

Let $\Phi = \{\phi_t\}$ be a one parameter group acting on M, arising from a C^1 vector field X. Let $N_{\tau}(\Phi)$ be the number of closed orbits of Φ of period less than or equal to τ .

THEOREM 2. Let Φ satisfy Axiom A' of [4, 5.1], then there exist constants c and k such that $N_r(\Phi) \leq ce^{kr}$.

Since the closed orbits are uniformly bounded away from the singularities, which are finite in number, Ω_c the complement of the singularities in Ω , is compact. Every point z in Ω_c has a flow box

 $^{^{1}}$ This work was done while the author was partially supported by National Science Foundation Grant No. 6868.

MICHAEL SHUB

neighborhood, V_s , such that V_s has a cross section X_s ; and for some δ , $V_s = \bigcup_{x \in X_s, |t| < \delta} \phi_t(x)$ where δ is independent of z. Denote by $\pi_z: V_s \to X_s$ the map which takes $\phi_t(x)$ to x for $|t| < \delta$ and $x \in X_s$. The V_s and t may be chosen so that if $x, y \in X_s$ and $\phi_t(x), \phi_t(y) \in X_{w_1}$; $\phi_{-t}(x), \phi_{-t}(y) \in X_{w_2}$ then either $\pi_{w_1}\phi_t$ or $\pi_{w_2}\phi_{-t}$ increases their distance by a factor of $k_1 > 1$; k_1 independent of z.

Now cover Ω_c by a finite number of V_s ; V_1, V_2, \dots, V_n . Note that if $x \in X_i$ and $\phi_i(x) \in V_j$ then $\pi_i \phi_{-i} \pi_j \phi_i(x) = x$, and similarly for ϕ_{-i} . Define an invariant sequence of a closed orbit $\alpha \subset \Omega_c$ as a sequence $a_1 \cdots a_m$ such that $a_i = 1, \dots, n$; $a_1 = a_m$ and there exist $x_{a_i} \in X_{a_i}$ where $x_{a_1} = x_{a_m}, \pi_{a_i} \phi_i(x_{a_{i-1}}) = x_{a_i}$ and $\pi_{a_{i-1}} \phi_{-i}(x_{a_i}) = x_{a_{i-1}}$. It is clear from the definition and the choice of the V_i that no two distinct closed orbits may have the same invariant sequence. We will show that $\exists c > 0$ such that a closed orbit of period $\leq \tau$ has an invariant sequence of length at most $nc\tau + 1$, and thus the number of closed orbits of period $\leq \tau$ is less than or equal to $n^{nc\tau+2} = n^2 e^{\tau c \log n}$.

To get the invariant sequence, $\exists c > 0$ such that if α is a closed orbit of period $\leq \tau$ then α intersects X_i for any *i* in at most $c\tau$ points, *c* is independent of τ . So there are at most $nc\tau$ intersections of α with all the X_i . Let x_0 be one of these. Define x_i inductively by $x_{i+1} = \pi_j \phi_i(x_i)$ where $\phi_i(x_i) \in V_j$ for some *j*. x_k must equal x_m for some *k*, $m \leq nc\tau$ and $k \neq m$.

Of course, this proof would also work in the diffeomorphism case. The construction of the corresponding V_i , however, essentially gives the proof of expansiveness which was shown to me by Smale.

These theorems, of course, have relevance for the convergence of the zeta functions. For a discussion of this see [3] and [4].

References

1. M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82-99.

2. K. R. Meyer, Periodic points of diffeomorphisms, Bull. Amer. Math. Soc. 73 (1967), 615-617.

3. ———, On the convergence of the zeta function for flows and diffeomorphisms, J. Differential Equations (to appear).

4. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.

5. R. Abraham and S. Smale, Non-genericity of Ω -stability (to appear).

BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154