MANIFOLDS HOMEOMORPHIC TO SPHERE BUNDLES OVER SPHERES

BY R. DE SAPIO¹

Communicated by William Browder, July 9, 1968

1. Statement of results. Let E be the total space of a k-sphere bundle over the *n*-sphere with characteristic class $\alpha \in \pi_{n-1} (SO_{k+1})$. We consider the problem of classifying, under the relation of orientation preserving diffeomorphism, all differential structures on E. It is assumed that E is simply connected, of dimension greater than five, and its characteristic class α may be pulled back to lie in $\pi_{n-1}(SO_k)$ (that is, the bundle has a cross-section). In [1] and [2] we gave a complete classification in the special case where $\alpha = 0$. The more general classification Theorems 1 and 2 below include this special case. The proofs of these theorems are sketched in §2 below; detailed proofs will appear elsewhere. J. Munkres [6] has announced a classification up to concordance of differential structures in the case where the bundle has at least two cross-sections. (It is well known that concordance and diffeomorphism are not equivalent, concordance of differential structures being strictly stronger than diffeomorphism.)

THEOREM 1. Let E be the total space of a k-sphere bundle over the n-sphere whose characteristic class² α may be pulled back to lie in $\pi_{n-1}(SO_k)$. Suppose that $2 \leq k < n-1$. Then, under the relation of orientation preserving diffeomorphism, the diffeomorphism classes of manifolds homeomorphic to E are in a one-to-one correspondence with the equivalence classes on the set $(\theta_n/\Phi_n^{k+1}) \times \theta_{n+k}$, where (A_*^n, U^{n+k}) and (B_*^n, V^{n+k}) are equivalent if and only if $A_*^n = \pm B_*^n$ and there exists $\beta \in \pi_k(SO_{n-1})$ such that $U^{n+k} - V^{n+k} = \tau'_{nk}(A_*^n \otimes \beta) + \sigma_{n-1,k}(\alpha \otimes \beta)$.

Theorem 1 is also true in the case where k=n-1 and n is odd. The classification in the case where $n-1 \le k \le n+2$ is essentially the same as the above and is given in Theorem 2 below. Now we establish the notation used in Theorem 1.

NOTATION. Manifolds and diffeomorphisms are of class C^{∞} . The group of homotopy *n*-spheres under the connected sum operation +

¹ The preparation of this paper was supported in part by National Science Foundation Grant # GP 7036.

² Added in proof. Assume here and in Proposition 2 that α is of order 2 in π_{n-1} (SO_{k+1}) in the case where k < n-3. This assumption is not made elsewhere.

R. DE SAPIO

is denoted by θ_n , and Φ_n^{k+1} is the subgroup of θ_n consisting of those homotopy *n*-spheres that embed in (n+k+1)-space with a trivial normal bundle. The class of a homotopy *n*-sphere A^n in the group θ_n/Φ_n^{k+1} is denoted by A_*^n . Now let

$$\sigma_{n-1,k} \colon \pi_{n-1}(SO_k) \otimes \pi_k(SO_{n-1}) \to \theta_{n+k},$$

$$\tau_{n,k} \colon \theta_n \otimes \pi_k(SO_{n-1}) \to \theta_{n+k}$$

be the pairings defined in [4, p. 583]. It is known that these pairings correspond to composition in the stable homotopy groups of spheres. Moreover, it was shown in [2] that $\tau_{n,k}(\Phi_n^{k+1} \otimes \pi_k(SO_{n-1})) = 0$, provided that $k \ge 2$, and hence the pairing $\tau_{n,k}$ induces a pairing

$$\tau'_{n,k}: (\theta_n/\Phi_n^{k+1}) \otimes \pi_k(SO_{n-1}) \to \theta_{n+k} \qquad (k \ge 2).$$

REMARK. If $k \ge n-3$, then $\Phi_n^{k+1} = \theta_n$ (see [1, Lemma 1]) and hence $\tau_{n,k} = \tau'_{n,k} = 0$ for $k \ge n-3$.

In order to state the result in the case where $n-1 \le k \le n+2$ we define a function

(1)
$$\sigma'_{n,k} \colon \pi_{n-1}(SO_k) \times \pi_k(SO_n) \to \theta_{n+k}$$

that is linear in the second variable. The definition of $\sigma'_{n,k}$ is similar to the definition of the pairing $\sigma_{n-1,k}$ and is described in §2 below. Now if $\alpha \in \pi_{n-1}(SO_k)$ is the characteristic class of the bundle E, then we define a homomorphism

$$\chi_{\alpha} \colon \pi_k(SO_n) \to \theta_{n+k}$$

by writing, for each $\beta \in \pi_k(SO_n)$,

$$\chi_{\alpha}(\beta) = \sigma'_{n,k}(\alpha,\beta).$$

THEOREM 2. Suppose that the characteristic class α of the bundle E may be pulled back to lie in $\pi_{n-1}(SO_k)$. Then, if $1 \leq n-3 \leq k \leq n+2$ and $k \geq 2$, then the diffeomorphism classes of manifolds homeomorphic to E are in a one-to-one correspondence with the group $\theta_{n+k}/\text{Image }\chi_{\alpha}$.

2. Outline of proofs. We give E the "standard" differential structure by making it a smooth k-sphere bundle over the standard n-sphere S^n . It is well known that if a k-sphere bundle over the n-sphere has a cross-section, then the total space of the bundle has the homology of the product $S^n \times S^k$. The proof of Theorem 1 is divided into the following four propositions. We use the notation $E(A^n)$ to denote the differential (n+k)-manifold obtained by making E into a smooth k-sphere bundle over a homotopy n-sphere A^n in the obvious way (if

n = 4, then take A^4 to be homeomorphic to S^4). We assume that E has a cross-section, n > 3, and n + k > 5. We also assume that $k \ge 2$, except in Proposition 4 where we allow k = 1.

PROPOSITION 1. If M is a differential (n+k)-manifold that is homeomorphic to E, then there are homotopy spheres A^n and U^{n+k} such that M is diffeomorphic to $E(A^n) + U^{n+k}$, provided that $k \leq n+2$.

SKETCH OF PROOF. Since E is of dimension greater than five and simply connected we can apply the Hauptvermutung of [7] to conclude that there is a PL-homeomorphism $h: M \rightarrow E$, where the combinatorial structures are compatible with the differential structures. We try to smooth h by applying the obstruction theory of Munkres [5]. If k < n, then the first obstruction to deforming h into a diffeomorphism is an element c(h) in $H_n(M; \Gamma_k)$, where Γ_k is the group of diffeomorphisms of S^{k-1} modulo those that extend to diffeomorphisms of the k-disk D^k . Since $H_n(M; \Gamma_k)$ is isomorphic to Γ_k we can consider c(h) to be an element of Γ_k . Now we construct a manifold M(c(h)) and a PL-homeomorphism j from E to M(c(h)) such that the first obstruction to smoothing j is -c(h). It follows that the first obstruction to smoothing the composition *jh* is zero and hence we can suppose that jh is a diffeomorphism modulo the k-skeleton. The next step is to show that there is a diffeomorphism modulo a point $\phi: M(c(h)) \rightarrow E$, (this is true for $k \leq n+2$) and hence the composition $h' = \phi_j h$ is a diffeomorphism modulo the k-skeleton. The first obstruction to smoothing $h': M \to E$ is an element c(h') in $H_k(M; \Gamma_n) \approx \Gamma_n$. Now let A^n be the homotopy *n*-sphere that corresponds to c(h') under the isomorphism $\Gamma_n \approx \theta_n$ $(n \neq 3)$. There is a PL-homeomorphism j' from E to $E(A^n)$. Moreover, the first obstruction to smoothing j' is -c(h')and hence we can assume that the composition i'h' is a diffeomorphism up to a point. It follows that there is a homotopy (n+k)-sphere U^{n+k} such that M is diffeomorphic to $E(A^n) + U^{n+k}$. The argument in the case where $n \le k \le n+2$ is essentially the same. Note that if n=4, then the homotopy sphere A^4 is homeomorphic and hence diffeomorphic to S^4 since $\Gamma_4 = 0$.

The remaining propositions combine to give a classification of manifolds of the form $E(A^n) + U^{n+k}$.

PROPOSITION 2. $E(A^n)$ and $E(B^n)$ are diffeomorphic if and only if $A^n \equiv \pm B^n \mod \Phi_n^{k+1}$.

The proof of Proposition 2 is similar to the proofs of Lemmas 5 and 6 of [1]. R. Schultz informs me that he has also proved Proposition 1 and Proposition 2.

PROPOSITION 3. If $E(A^n) + U^{n+k}$ is diffeomorphic to $E(B^n)$, where A^n , B^n , U^{n+k} are homotopy spheres, then $E(A^n)$ and $E(B^n)$ are diffeomorphic.

The proof of Proposition 3 is similar to the proof of Lemma 3 of [1].

PROPOSITION 4. Let A^n , U^{n+k} be homotopy spheres such that $1 \le k < n-1$. Then, $E(A^n) + U^{n+k}$ is diffeomorphic to $E(A^n)$ if and only if there exists an element $\beta \in \pi_k(SO_{n-1})$ such that

$$U^{n+k} = \tau_{n,k}(A^n \otimes \beta) + \sigma_{n-1,k}(\alpha \otimes \beta).$$

The proof of Proposition 4 is similar to the proof of Theorem 3.1 of [2] except that the proof here is a bit more complicated since there are two pairings involved rather than just the pairing $\tau_{n,k}$.

Now we give the construction of the function $\sigma'_{n,k}$ of (1) in §1. Let $\gamma: S^{n-1} \rightarrow SO_k$ and $\beta: S^k \rightarrow SO_n$ be differentiable maps that represent elements in $\pi_{n-1}(SO_k)$ and $\pi_k(SO_n)$, respectively. We can assume that β maps the southern hemisphere D_{-}^{k} of S^{k} into the identity of SO_{n} . Define diffeomorphisms λ_{γ} and μ_{β} of $S^{n-1} \times S^k$ by writing, for each $(u, v) \in S^{n-1} \times S^k, \lambda_{\gamma}(u, v) = (u, s\gamma(u) \cdot v) \text{ and } \mu_{\beta}(u, v) = (\beta(v) \cdot u, v); \text{ here}$ the dot denotes the action of the rotation group on the sphere and s denotes the natural inclusion of SO_k in SO_{k+1} . It is clear that $\lambda_{\gamma}(S^{n-1} \times D^{k}_{-}) = S^{n-1} \times D^{k}_{-}$ and hence it follows that the diffeomorphism $\lambda_{\tau}^{-1} \mu_{\theta} \lambda_{\tau}$ of $S^{n-1} \times S^k$ is the identity on $S^{n-1} \times D_{-}^k$. Now if B^{n+k} is an (n+k)-disk in the interior of $D^n \times S^k$, then it follows that the diffeomorphism $\lambda_{\gamma}^{-1}\mu_{\beta}\lambda_{\gamma}$ can be extended to a diffeomorphism of $D^n \times S^k$ – Interior B^{n+k} . The diffeomorphism induced on the (n+k-1)-sphere ∂B^{n+k} determines an element $\sigma'_{n,k}(\gamma,\beta)$ of θ_{n+k} , and it is not hard to show that this element depends only on the homotopy classes of γ and β . In fact, $\sigma'_{n,k}(\gamma, \beta)$ is the obstruction to extending $\lambda_{\tau}^{-1} \mu_{\beta} \lambda_{\gamma}$ to a diffeomorphism of $D^n \times S^k$. Since obstructions are additive with respect to compositions and

$$\lambda_{\gamma}^{-1}\mu_{\beta+\beta'}\lambda_{\gamma} = (\lambda_{\gamma}^{-1}\mu_{\beta}\lambda_{\gamma})(\lambda_{\gamma}^{-1}\mu_{\beta'}\lambda_{\gamma}),$$

the correspondence $(\gamma, \beta) \rightarrow \sigma'_{n,k}(\gamma, \beta)$ is linear in β .

PROPOSITION 5. Let A^n and U^{n+k} be homotopy spheres such that $1 \leq n-3 \leq k < 2n-3$. Then, $E(A^n)+U^{n+k}$ is diffeomorphic to $E(A^n)$ if and only if there exists an element $\beta \in \pi_k(SO_n)$ such that $U^{n+k} = \chi_{\alpha}(\beta)$.

Now Theorem 2 follows by applying Propositions 1, 2, and 5, noting that $\Phi_n^{k+1} = \theta_n$ for $k \ge n-3$.

We conclude with some remarks on the case where k > n+2. Proposition 1 is not true in this case. For example let Σ^{16} denote the non-

MANIFOLDS HOMEOMORPHIC TO SPHERE BUNDLES

zero element of $\theta_{16} \approx Z_2$. It is known that Σ^{16} does not embed in R^{29} with a trivial normal bundle [3, Theorem 1.3]. Suppose that the conclusion of Proposition 1 is true for $S^{12} \times \Sigma^{16}$; that is, suppose that $S^{12} \times \Sigma^{16}$ is diffeomorphic to $(A^{12} \times S^{16}) + U^{28}$ for homotopy spheres A^{12} and U^{28} . It is well known that $A^{12} \times S^{16}$ is diffeomorphic to $S^{12} \times S^{16}$ and hence it follows that $S^{12} \times \Sigma^{16}$ and $S^{12} \times S^{16}$ are diffeomorphic up to a point. This implies that Σ^{16} embeds in R^{29} with a trivial normal bundle, a contradiction. On the other hand if k > n+2, then the characteristic class α may be pulled back to lie in $\pi_{n-1}(SO_{k-2})$. Define homomorphisms $\eta_{\alpha}: \theta_k \rightarrow \theta_{n+k-1}$ and $\eta'_{\alpha}: \theta_{k+1} \rightarrow \theta_{n+k}$ by writing

$$\eta_{\alpha}(\Sigma^k) = \tau_{k,n-1}(\Sigma^k \otimes \alpha) \quad \text{and} \quad \eta'_{\alpha}(\Sigma^{k+1}) = \tau_{k+1,n-1}(\Sigma^{k+1} \otimes \alpha)$$

for $\Sigma^k \in \theta_k$ and $\Sigma^{k+1} \in \theta_{k+1}$, respectively. It follows from [2] that $\Phi_k^n \subset \text{Kernel } \eta_{\alpha}$. Moreover, we can show that the number of distinct (nondiffeomorphic) differential structures on E is not greater than the order of Kernel η_{α}/Φ_k^n times the order of $\theta_{n+k}/\text{Image } \eta'_{\alpha}$. We plan to give the explicit computation at a later date. Finally, it follows from Munkres [6] that the concordance classes of differential structures on E are in a one-to-one correspondence with

 $\theta_n \oplus (\text{Kernel } \eta_{\alpha}) \oplus (\theta_{n+k}/\text{Image } \eta'_{\alpha}).$

References

1. R. De Sapio, Differential structures on a product of spheres, Comment. Math. Helv. (to appear).

2. ——, Differential structures on a product of spheres. II, Ann. of Math. (to appear).

3. W. C. Hsiang, J. Levine and R. H. Szczarba, On the normal bundle of a homotopy sphere embedded in Euclidean space, Topology 3 (1965), 173–181.

4. R. Lashof, Problems in differential and algebraic topology, Seattle Conference, 1963, Ann. of Math. (2) 81 (1965), 565-591.

5. J. Munkres, Obs!ructions to the smoothing of piecewise differentiable homeomorphisms, Ann. of Math. (2) 72 (1960), 521-554.

6. ——, Concordance of differentiable structures—two approaches, Michigan Math. J. 14 (1967), 183–191.

7. D. Sullivan, On the Hauptvermutung for manifolds, Bull. Amer. Math. Soc. 73 (1967), 598-600.

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

1969]