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1. Introduction. The results announced here are of two sorts. First, 
two important tools from operator theory on Hilbert spaces, the no
tions of states and of numerical ranges of operators, are extended to 
the setting of operator theory on general locally convex spaces. We 
employ several ideas developed in the work of Lumer [l ] for extend
ing these methods to Banach spaces, combining these with the gen
eralizations of classical Banach space methods to the locally convex 
setting announced by the author in [3], 

Second, several related results are announced concerning the ap
proximation of spectra of operators by their numerical ranges. These 
results are new in the classical settings of Hilbert and Banach spaces 
as well as in the more general setting. An interesting motivating 
example on Hilbert spaces, couched in terms of familiar notions, is 
discussed separately in §2, unencumbered by the technical machinery 
of later sections. 

Full details of proof will appear in two places. A short, less tech
nical discussion of these methods as applied to Hilbert spaces, Banach 
spaces, B* algebras, and Banach algebras will appear in [ó]. The gen
eral theory, with concrete applications, will be included in the mono
graph [5], along with the results announced in [4], which use these 
methods to provide a unified theory of the generation of semigroups. 

2. Approximation of spectra in Hilbert spaces. Let § be a complex 
Hilbert space with a fixed reference inner product ( , )o. Call another 
inner product ( , ) equivalent to ( , )o iff the norms jj#|| = (u, u)112 

and ll̂ Ĥ0 = (u, u)l/2 induce the same topology on $ ; we view inner 
products as "noncanonicaP structures associated with an underlying 
topology, subject to change when convenient. 

Then, for any such inner product ( , ) on £ , the numerical range is 

(1) W(T, ( , )) - {(Tu, «) I u E $ , and||«| | = l } . 

I t is well known that W(T, ( , )) is a convex set with compact clo
sure containing the spectrum of T. In fact, if K — W(T, ( , ))~ (the 

1 Research supported in part by NSF GP5585. 

85 



86 R. T. MOORE [January 

closure of W) and dx = dist(X, K) for \$zK, then the first-order decay 
estimate holds: 

(2) Ikx-rn^r1 

and this property is known to characterize K [7]. 

THEOREM 0. Let U be any open set containing the closed convex hull 
cocl(<r(T)) of <r(T). Then there exists an inner product ( , ) on H equiv
alent to ( , )o such that 

(3) *(T) C W(T, ( , ) ) - C U. 

Furthermore, if 

(4) WH(T) = O {W(T, ( , ) ) - | ( , ) equivalent to ( , )0} 

is the Hilbertian numerical range of T, then 

(5) coclOKD) = WH(T). 

COROLLARY. For any operator r £ ( B ( § ) and e>0 there exists an 
inner product ( , ) such that 

(6) || (X - T H g [dist(X, cocl(<r(D)) - J - i . 

3. Geometries, numerical ranges, and first-order decay. The first 
step in generalizing the theory of §2 is to find a suitable geometrical 
structure on a general locally convex space 3E to replace the inner 
product on a Hubert space, and then to extend the numerical range 
notion. In the language introduced in [3], suppose T calibrates a 
complex locally convex space (les) 36. 

LEMMA 1 (LUMER [ l ]) . Let £ £ I \ Then there exists a choice f unction 
XP' 36—>36* (frequently more than one) such that 

(7) (a) p(u)2 = (u} XP(U)) for all u £ 36, and 

(8) (b) | (u, xp(?)) | ^ p(u)p(v) for all u, v in X. 

(Here X* denotes the space £(36, C) of continuous linear functionals 
from 36 to C and u->(u, w*) denotes the action of #*£36* on w£36.) 

Then an important part of the ultimate (Lumer) geometry A* for 
36 is defined by selecting for each p £ T a Xp and settingAo = { XP\ PGT}. 
For a general densely defined (dd) A on 36, we define a first part of 
the numerical range: 

(9) W(A, Ao) = {(Au, XP(U))\U £ D(A), Xp £ A0, a n d ^ ) = l } . 

In general, W(A% Ao) does not appear to be big enough to imitate the 
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numerical range W(T, ( , )) in §2; duality must be brought in more 
strongly by considering adjoints. 

Recall first that if A is any densely defined operator on 36, and ï* 
is the space of all continuous linear functionals w* on 36, then the 
adjoint A* of A is defined, for all w*£36* where u—>(Au, u*) is con
tinuous on the domain D(A), by (Au, u*) = (u, A*u*). If the strong 
dual of 36 is denoted by 36£, we have the following analog of a familiar 
Banach space theorem concerning operator norms of adjoints. 

THEOREM 2. For every calibration Y f or 36, there exists a natural dual 
calibration T* for 36| such that the adjoint map T-+T* is an isometric 
isomorphism of 5 (̂36) into 9rrl|c(36|). Thus T—>T* carries ^(36) into 

Picking ax« for each g ET*, we may form a set Ai= {x«|<z€ïr*}. 
Following a suggestion of Phillips [8], let 36° be the closure of D(A*) 
in 3Ç, and let D(A*) = {u*eD(A*)\A*U*e%°}, AQ=A*\DUeh 

Then in analogy with (9) 

(10) W(A*,Aà = { ( i X x M l ^ G ^ ^ ^ . G A ^ W = 1}. 

DEFINITION 1. Let V calibrate a complex les 36, and let T* be the 
dual calibration of 36|. 

(a) Then A*=AoVJAi is a (Lumer) geometry for (36, Y). 
(b) Furthermore, if A is densely defined on 36 

(11) W(A, A*) = W(A, Ao) U W(A°, Ax) 

is the numerical range of A. 
Then the following result generalizes §2, Lumer [ l ] , and unpub
lished remarks made to the author by J. Hosack. 

THEOREM 3. (a) Suppose Y calibrates a complete complex les 36 and 
A is closed dd on 36. Then W(A, A*)"" D or(A) and if d\ 
= dist(X, W(A,A*)~) 

(i2) ikx-^nir^r1 

for all geometries A* for (36, Y). 
(b) Similarly, if Y calibrates a complex normcomplete les 36 and 

A£;$r00, then the closed convex hull K = cocl(W(A, Ao))Do,r(A) and 
if d\ = dist(X, K), (12) holds f or every A* for Y. 

(c) Furthermore, if Kis any closed convex set in C such that KZ}<TT(A) 

and f or 4 = dist(X, K) (12) holds, then KDW(A, A*) for all A* for 
(X, r) . 

(d) In particular, if A* and Ai are two geometries for (36, Y), then in 
(a) or (b) 
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(13) cocl(W(A, A*)) = cocl(PF(^, Ai)). 

4. Convex approximation of spectra. The generalization of Theo
rem 0 to the locally convex setting seems to require restriction to 
finite operators r££F(3E) — U {iMBOlr calibrates ï } ; these operators 
are the ones which most closely imitate "bounded" operators on 
Banach and Hubert spaces. 

THEOREM 4. Suppose 36 is a complex normcomplete les. Let TG0r(3£) 
and suppose U is an open set containing the closed convex hull of the 
finite spectrum cocl(<r*(!T)). Then there exists a calibration Y f or 36 such 
that if A* is any geometry for (3E, T) 

(14) **F(T)CW(T, A*)~CU. 

Consequentlyj in particular 

**F(T) C WG(T) » D {W(Tf A*)" | T € Sr(X), and 

A* a geometry for (36, T)} C cocl (CTF(T)). 

The proof of this theorem depends upon a simpler fact which is a 
corollary of Theorem 4 from [3], the recalibration theorem. We write 
| W\ (T, A*)=sup{|X| \\ÇzW(T, A*)} for the numerical radius of 
T with respect to A*. 

LEMMA 5. (a) If TE$&), 

(16) rE(T) = inf { \w\(T,A*)\TE SFr(39, A* a geometry for (3£, r ) } . 

(b) Indeed^ if {7\, • • • , jf*} is a /̂iwite commutative family in 
5̂ (36), awd e>0 , /&£# there exists a calibration V with {Ti\l^iSk} 
(Z&r(X) such that for every A* for (X, T) 

(17) rE(Tt) &\W\ (Ti9 A*) Û rE(Ti) + e, 1 S t ^ i . 

No satisfactory answer is known at present to the question : When 
is the limit in (16) of Lemma 5(a) achieved for some equivalent 
geometry A*? That is, when do we have 

(18) rB{T) = | F F | ( I \ A * ) ? 

If A* is a geometry for a Banach space (36, j | -|j) ( r = {|| •[(}) and T 
is A*-Hermitian (W(T, A*) QR), then Vidav [9] has essentially shown 
that (18) holds. Also, on a Banach space (36, |J - | | ) , (18) will occur if 
the operator Banach algebra generated by T and / is topologically 
isomorphic to its Gelfand transform function algebra (with the uni
form norm). 
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5. Decomposition of numerical ranges by projections. Unlike 
numerical ranges defined by inner products, general numerical ranges 
need not be convex; systematic exploitation of this nonconvexity can 
provide useful tools in operator theory. For example, the first part 
W(T, Ao) of the numerical range can exhibit the same sort of decom
position with respect to projections as does the spectrum. Call 
(R= {Ei\ 1 ^i^k} a (finite) resolution of the identity f or T if ^ E t = = J f 

EiEj = öijEj and EiT=TEi for all i, j . Let Ti denote the restriction 
of T to the closed invariant subspace ï , = E; ï . I t is easy to check 
that (r*(T) =(J{<r^(Ti)\ 1 ^i^k} as a "canonical" topological fact, 
but careful choice of V and Ao leads to the following analog for nu
merical ranges. 

LEMMA 6. In the above situation, suppose A* is an equivalent geometry 
for %i (with the relative topology). Then there exists an equivalent geom
etry K^ f or Ï with first part A0 satisfying 

(a) every x^^o is the restriction of a x£A 0 , and 

(19) (b) W(T, Ao) = U {W(Tiy Ao) | 1 ^ * S k). 

REMARK. Even in the simplest cases, one cannot hope for a simul
taneous decomposition like the above for the second part W(T, Ai) 
as well. 

This result and Theorem 3(b) allow one to piece together a better 
approximation theorem for the spectrum. 

THEOREM 7. Continuing as above, suppose UiD<r*(Tù for l^i^k. 
Then there exist geometries A* for the Hi and A* for £ such that if 
Q=U{cod(W(Ti, Aj)) | lg*gife}, then Q~D<TF(T) and for the associ
ated calibration Y 

(20) ||(X — D^IIr ^ dist(X, Ö)-1-

These and similar methods enable one to obtain quite detailed in
formation, of numerical range type, about the spectrum and resolvent 
decay of operators with ample supplies of spectral projections. Many 
of the ideas date back to Dunford [2]; connections with the active 
current literature for locally convex spaces will be discussed in later 
papers. 

6. Perturbation of numerical ranges. For many purposes, the 
dependence of the numerical range W(T, A*) of a continuous T£<£(£) 
upon T is much more accessible than is the comparable dependence 
of <Tf(T) on T. We write £.(£) and £bQt) for <£(£) with the topology 
of simple convergence and bounded convergence respectively. 
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PROPOSITION 8. Let Y calibrate a les £ and let A* be a geometry for 
(3Ê, T). Suppose that for some net {Ta\aÇ.j} in «£(£) and some closed 
KCC, W(Ta, A*) CK for all « £ ƒ . 

(a) If Ta-+T in £*(*), then W(Ta, A*) CK. 
(b) If X is reflexive, and Ta—>T in £,(%), then W(T, A») CK. 

PROPOSITION 9. Suppose T0Çzïïr(X) and U is an open set containing 
W(To, A*). Then there exists a \\ ̂ -neighborhood N(To)C$r(X) such 
that if TeN(To), W(T, A*) C U. 

PROPOSITION 10. Let A* and T be as in Proposition 9 and suppose 
S, T are in <£(£). Then 

(21) W(S + T, A*) C W(S, A*) + W(T, A*). 

REMARK. Although the assumptions that T be continuous and that 
ï be reflexive would be unrealistic in many of the classical Banach 
space formulations of such theories as existence and uniqueness of 
solutions to integro-differential equations, both assumptions are 
typically satisfied in the modern locally convex test-function/dis
tribution formulations. 
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