DIFFERENTIABLE FUNCTIONS ON c_0

BY JOHN WELLS

Communicated by Richard Palais, September 3, 1968.

If E and F are two Banach spaces, denote by $C^{p,q}(E, F)$, $0 \le q \le p \le \infty$, those functions in $C^p(E, F)$ whose derivatives of order less than or equal to q are bounded. Call a Banach space, $E, C^{p,q}$ smooth if there exists a nonzero $C^{p,q}$ function on E with bounded support. Then finite dimensional spaces are $C^{\infty,\infty}$ smooth and if an L_p space is C^q smooth it is also $C^{q,q}$ smooth. Although c_0 is known to possess a C^{∞} (away from zero) norm as described in Bonic and Frampton [1], it is a consequence of the following theorem that c_0 is not $C^{2,2}$ smooth.

THEOREM. Let $f \in C^1(c_0, R)$ with Df uniformly continuous. Then the support of f is unbounded.

PROOF. If not then there would exist an $f \in C^1(c_0, R)$ such that f(0) = 1, f(x) = 0 for $||x|| \ge 1$ and Df is uniformly continuous. Pick N such that $||h|| \le 1/N$ implies $||Df(x+h) - Df(x)|| \le 1/2$. Then the mean value theorem gives that $|f(x+h) - f(x) - Df(x)(h)| \le 1/2||h||$ when $||h|| \le 1/N$. Let A be the set of all x in c_0 such that $2^N - 1$ of the first 2^N components of x have absolute value 1/N, the remaining component has absolute value less than or equal to 1/N and all the components after the first 2^N are zero. Since A is connected and even, we can pick inductively $h_1, \cdots h_N \in A$ such that $Df(h_1 + \cdots + h_{k-1}) \cdot (h_k) = 0$ and $h_1 + \cdots + h_k$ has at least 2^{n-k} components equal to k/N. Then

$$\|h_1+\cdots+h_N\|=1$$

and

$$|f(h_1 + \dots + h_N) - f(0)|$$

$$\leq \sum_{k=1}^N |f(h_1 + \dots + h_k) - f(h_1 + \dots + h_{k-1}) - Df(h_1 + \dots + h_{k-1})h_k| \leq \sum_{k=1}^N \frac{1}{2} ||h_k|| = \frac{1}{2}$$

which is a contradiction.

COROLLARY 1. Let $f \in C^1(c_0, R)$ and Df be uniformly continuous. Then $f(\delta U)$ is dense in f(U) for all bounded open sets U.

JOHN WELLS

COROLLARY 2. There exists a closed subset of c_0 which is not the loci of zeros of a C^2 function.

PROOF. Consider the complement of a sequence of disjoint open balls converging to a point.

The C^{∞} norm described in [1] has first derivative bounded by one and by composing with a suitable function in $C^{\infty}(R, R)$ we get a $C^{\infty,1}$ function on c_0 with bounded support. The following is another example of a $C^{\infty,1}$ function.

Let $\eta \in C^{\infty}(R, R)$, $\eta(t) \ge 0$, $\eta(t) = 0$ if $|t| \ge 1/4$ and $\int_{-1/4}^{1/4} \eta(t) dt = 1$. Define

$$\phi_n(x) = \int_{-1/4}^{1/4} \cdots \int_{-1/4}^{1/4} \eta(y_1) \cdots \eta(y_n)$$

$$\cdot F(x_1 + y_1, \cdots, x_n + y_n, x_{n+1}, \cdots) dy_1 \cdots dy_n$$

where $F(x) = \inf_{\|y\| \leq 1} (\|x-y\|)$, $x = \{x_1, x_2, \dots\}$, $y = \{y_1, y_2, \dots\}$. Suppose that $|x_m| \leq 1/4$ if m > n(x). Now if $||x'-x|| \leq 1/4$, $||y|| \leq 1/4$ and $x'_m = x_m$ for $m \leq n(x)$, then F(x'+y) = F(x+y). Hence when $||z-x|| \leq 1/4$, $\phi_{n(x)}(z)$ depends only on the first n(x) coordinates and therefore is C^{∞} . Also $||x'-x|| \leq 1/4$, $||y|| \leq 1/4$ and $y_1 = \dots = y_{n(x)} = 0$ imply that F(x'+y) = F(x'). Hence $\phi_m(x') = \phi_{n(x)}(x')$ when $m \geq n(x)$ and $||x'-x|| \leq 1/4$. The above implies that $\phi(x) = \lim_{n \to \infty} \phi_n(x)$ exists and is C^{∞} for all x. Now $|\phi_n(x) - \phi_n(z)| \leq \int_{-1/4}^{1/4} \cdots \int_{-1/4}^{1/4} \eta(y_1) \cdots$ $\eta(y_n)||x-z||dy_1 \cdots dy_n = ||x-z||$. Hence $|\phi(x) - \phi(z)| \leq ||x-z||$ which gives $||D\phi(x)|| \leq 1$ for all x. Finally let $\rho \in C^{\infty}(R, R)$, $0 \leq \rho \leq 1$, $\rho(t) = 1$ if $t \leq 0$ and $\rho(t) = 0$ if $t \geq 3/4$. Then $\rho(\phi(x)) \in C^{\infty,1}(c_0, R)$, $\rho(\phi(0)) = 1$ and the support of $\rho(\phi(x))$ is contained in the unit ball.

BIBLIOGRAPHY

1. R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898.

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109

118