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Let f(z) be an entire function of order p < l . The classical "cos xp 
theorem'' of Valiron and Wiman [4, pp. 40, 51 ] asserts that if 

ju(r) = min | f(z) | , M(r) = max | f(z) | , 
\z\=r |z|=r 

then, given €>0, the inequality 

(1) log ju(r) > (cos 7Tp — e)log M(r) 

holds for a sequence r = rn—»+ °°. 
We consider those f unctions ƒ (z) for which (1) is the best possible 

inequality, and discuss the global asymptotic behavior of such func
tions. 

THEOREM 1. Let f(z) be an entire function of order p ( 0 g p < l ) , and 
suppose 

(2) log ii(r) S [cos TTp + e(r)] log Mir) 

where e(r)—»0 as r—><x>. 
Then there exists a set E of logarithmic density zero and a slowly vary

ing function2 \f/(r) such that 

(3) log M{r) = r^(r) (r <£ £ ) , 

(4) n(r, 0) = [sin xp/x + o(l)]rty(r) (r -> oo, r <J E) 

(where, as usual, n(r, 0) denotes the number of zeros of f(z) in \z\ g r ) , 

(5) log fx(r) = [cos xp + o(l) W ( r ) (r-> oo, r <£ EU H), 

where H has (linear) density zero. 
Further, there exists a real-valued function 0(r) such that if k> 1 and 

5 > 0 are given and v(r) denotes the number of zeros of f(z) in the region 

1 The first author was partially supported by NSF grant 4192-50-1395; the second 
author was partially supported by NSF grant GP-5728. 

* A function \[/(r) is said to vary slowly if it is defined and positive for all r>ro 
and satisfies \imr+a0}t'(<rr)/ip(r)-+l (0<<r< ») . For a useful discussion of the properties 
of such functions see, for example, [9, p. 419]. For a discussion of linear and loga
rithmic densities see [4, p. 5]. 
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{z: k~lr ^ \z\ ^ kr, 5 g | arg z - 6(r) | g TT}, 

then 

(6) »(') - «WW) ( r ^ = o , r ^ £ ) . 

r^6 function d(r) oscillates slowly outside of E, in the sense that if 
k>l and e > 0 are given, then 

(7) \e(t)-6(r)\ < « (r > r0(e, * ) , r £ E) 

holds for all t in the interval lrlr £t^kr. 

The content of the conclusions (3)-(7) can be expressed more 
intuitively if we say that on almost all long intervals, f(z) behaves 
like a Lindelof function of order p [12, p. 18]. Indeed, it is not difficult 
to see that Theorem 1 implies that the asymptotic expansion 

log |/(te«*+*>) | = [ c o s # + o(l)]Mr)» 

(k~lrS t<hr,t<£H> | * | a * ) , 

is valid (uniformly in t and <f>) as r—»<*> outside E, where # O = 0 ( P ) —TT, 
fe > 1 is a given constant, and H is the set of density zero given in 
Theorem 1. 

Recent examples3 of W. K. Hayman [lo] show that some excep
tional set E must be present in Theorem 1 ; when coupled with Theo
rem 2 below, they also show that even in the important special case 
when all the zeros of ƒ (z) are negative, E cannot be replaced by a set 
of linear density 0* 

Theorem 1 may be compared to recent results of Kjellberg [ l l ] , 
Essen [7], Essén-Ganelius [8], and Anderson [ l ] . These authors con
sider (2) from another point of view; in particular, p can be any 
number, 0 < p < l (not necessarily the order of ƒ(#)), but on the other 
hand, e(r) must satisfy some condition such as 

ÇBt e(r) log M(r) 
lim sup I — dr < M < <*>. 
Ai,A2-»ao J R\ rl+P 

Their conclusion, that log M(r)/r* tends to a limit a ( 0 g a g 00) as 
r—» 00 (with no need to avoid an exceptional set), is also of a different 
nature than that deduced here. 

1. Outline of the proof. Let ƒ(z) satisfy the hypotheses of the 
theorem. We can assume that ƒ(0) = 1, and write 

1 Hay man's examples are valid only if p = l/2, but he comments that this case 
is probably typical. 
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(LD /(«) = n( i - - ) , m = n(i+y—j-

Since 

(1.2) log | F ( - r ) | + log F(r) â log M(f) + log M(r) 

[4, p. 40], it follows at once that F(z) also satisfies the hypotheses 
of Theorem 1, and hence a theorem of P. D. Barry [3] yields that 

log I F(-r) I = [cos wp + o(l)] log F(r) (r->*,re G*), 

where G* has logarithmic density one. I t is not hard to see, using 
(1.2) and hypothesis (2) again, that 

(1.3) log M(r) ~ log F(r) (r -+ 00, r G G*). 

An easy extension of Theorem 2 of [2] now shows that from (1.3) 
follows 

(1.4) v(r) = o(\og Mir)) (r -> 00, r G G*). 

We next establish that G* can be replaced by a subset G* having 
the following crucial properties: there are sequences {an}t {/3»} and 
a set H of (linear) density zero such that 

•0 

G* = U [aw, ftj — fl" (a» ~* «0, #»/<*« -* «>) 

has logarithmic density one, and, if fe>l is given, then 

[trlan, kpn] CG*UH (n> *„(*)). 

The exceptional set E which appears in the statement of Theorem 1 
is the complement of G = U*el [anj /3n]. 

In view of elementary properties of sets of linear density zero, it is 
easy to see that (1.3) holds with G* replaced by G, and so it suffices to 
prove (3)-(5) for F(z). The argument hinges now on a suitable gen~ 
eralization (to allow exceptional sets of logarithmic density zero) of 
the following theorem [ó], which is one form of a complement to some 
classical results of Titchmarsh [13] and Bowen and Macintyre [5]. 

THEOREM 2. Let F(z) be an entire function of the form (1.1), and 
suppose 

log ! * ( - ' ) ! , „m 
— — >a (r-+ o o , r $ H ) , 

log F(r) 
where H is of (linear) density zero. 
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Then — l ^ a r g l , and 

log F{r) = ry(r), 

fsin wp "1 
n(rfi) = | ^ — — + o(l) J r^(r) (r -+ oo ), 

log | F(-r) | = [cos TTp + o(l) W W (r -> a>, r $ £f), 

wfora p is determined by 

cos wp = a ( O ^ p ^ 1), 

and ^ is a slowly varying function. 

Finally, (6) follows from (1.4) and (3), and (7) is an easy conse
quence of (6) (cf. [2, Corollary l ] ) . 

Conclusion (3) of Theorem 1 implies that ƒ (z) has regular growth 
in the sense of Valiron. Analogues of Theorem 1, valid for functions of 
irregular growth, can also be derived from these methods. 
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